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Fuzzy Logic Toolbox Product Description
Design and simulate fuzzy logic systems

Fuzzy Logic Toolbox provides MATLAB® functions, apps, and a Simulink® block for analyzing,
designing, and simulating systems based on fuzzy logic. The product guides you through the steps of
designing fuzzy inference systems. Functions are provided for many common methods, including
fuzzy clustering and adaptive neurofuzzy learning.

The toolbox lets you model complex system behaviors using simple logic rules, and then implement
these rules in a fuzzy inference system. You can use it as a stand-alone fuzzy inference engine.
Alternatively, you can use fuzzy inference blocks in Simulink and simulate the fuzzy systems within a
comprehensive model of the entire dynamic system.

Key Features
• Fuzzy Logic Design app for building fuzzy inference systems and viewing and analyzing results
• Membership functions for creating fuzzy inference systems
• Support for AND, OR, and NOT logic in user-defined rules
• Standard Mamdani and Sugeno-type fuzzy inference systems
• Automated membership function shaping through neuroadaptive and fuzzy clustering learning

techniques
• Ability to embed a fuzzy inference system in a Simulink model
• Ability to generate embeddable C code or stand-alone executable fuzzy inference engines

1 Getting Started
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What Is Fuzzy Logic?
Description of Fuzzy Logic
In recent years, the number and variety of applications of fuzzy logic have increased significantly. The
applications range from consumer products such as cameras, camcorders, washing machines, and
microwave ovens to industrial process control, medical instrumentation, decision-support systems,
and portfolio selection.

To understand why use of fuzzy logic has grown, you must first understand what is meant by fuzzy
logic.

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical system, which is an
extension of multivalued logic. However, in a wider sense fuzzy logic (FL) is almost synonymous with
the theory of fuzzy sets, a theory which relates to classes of objects with unsharp boundaries in which
membership is a matter of degree. In this perspective, fuzzy logic in its narrow sense is a branch of
FL. Even in its more narrow definition, fuzzy logic differs both in concept and substance from
traditional multivalued logical systems.

In Fuzzy Logic Toolbox software, fuzzy logic should be interpreted as FL, that is, fuzzy logic in its
wide sense. The basic ideas underlying FL are explained in “Foundations of Fuzzy Logic” on page 1-
8. What might be added is that the basic concept underlying FL is that of a linguistic variable, that
is, a variable whose values are words rather than numbers. In effect, much of FL may be viewed as a
methodology for computing with words rather than numbers. Although words are inherently less
precise than numbers, their use is closer to human intuition. Furthermore, computing with words
exploits the tolerance for imprecision and thereby lowers the cost of solution.

Another basic concept in FL, which plays a central role in most of its applications, is that of a fuzzy if-
then rule or, simply, fuzzy rule. Although rule-based systems have a long history of use in Artificial
Intelligence (AI), what is missing in such systems is a mechanism for dealing with fuzzy consequents
and fuzzy antecedents. In fuzzy logic, this mechanism is provided by the calculus of fuzzy rules. The
calculus of fuzzy rules serves as a basis for what might be called the Fuzzy Dependency and
Command Language (FDCL). Although FDCL is not used explicitly in the toolbox, it is effectively one
of its principal constituents. In most of the applications of fuzzy logic, a fuzzy logic solution is, in
reality, a translation of a human solution into FDCL.

A trend that is growing in visibility relates to the use of fuzzy logic in combination with
neurocomputing and genetic algorithms. More generally, fuzzy logic, neurocomputing, and genetic
algorithms may be viewed as the principal constituents of what might be called soft computing.
Unlike the traditional, hard computing, soft computing accommodates the imprecision of the real
world. The guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty,
and partial truth to achieve tractability, robustness, and low solution cost. In the future, soft
computing could play an increasingly important role in the conception and design of systems whose
MIQ (Machine IQ) is much higher than that of systems designed by conventional methods.

Among various combinations of methodologies in soft computing, the one that has highest visibility at
this juncture is that of fuzzy logic and neurocomputing, leading to neuro-fuzzy systems. Within fuzzy
logic, such systems play a particularly important role in the induction of rules from observations. An
effective method developed by Dr. Roger Jang for this purpose is called ANFIS (Adaptive Neuro-Fuzzy
Inference System). This method is an important component of the toolbox.

Fuzzy logic is all about the relative importance of precision: How important is it to be exactly right
when a rough answer will do?

 What Is Fuzzy Logic?
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You can use Fuzzy Logic Toolbox software with MATLAB technical computing software as a tool for
solving problems with fuzzy logic. Fuzzy logic is a fascinating area of research because it does a good
job of trading off between significance and precision — something that humans have been managing
for a very long time.

In this sense, fuzzy logic is both old and new because, although the modern and methodical science of
fuzzy logic is still young, the concepts of fuzzy logic relies on age-old skills of human reasoning.

Fuzzy logic is a convenient way to map an input space to an output space. Mapping input to output is
the starting point for everything. Consider the following examples:

• With information about how good your service was at a restaurant, a fuzzy logic system can tell
you what the tip should be.

• With your specification of how hot you want the water, a fuzzy logic system can adjust the faucet
valve to the right setting.

• With information about how far away the subject of your photograph is, a fuzzy logic system can
focus the lens for you.

• With information about how fast the car is going and how hard the motor is working, a fuzzy logic
system can shift gears for you.

A graphical example of an input-output map is shown in the following figure.
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Determining the appropriate amount of tip requires mapping inputs to the appropriate outputs.
Between the input and the output, the preceding figure shows a black box that can contain any
number of things: fuzzy systems, linear systems, expert systems, neural networks, differential
equations, interpolated multidimensional lookup tables, or even a spiritual advisor, just to name a few
of the possible options. Clearly the list could go on and on.

Of the dozens of ways to make the black box work, it turns out that fuzzy is often the very best way.
Why should that be? As Lotfi Zadeh, who is considered to be the father of fuzzy logic, once remarked:
"In almost every case you can build the same product without fuzzy logic, but fuzzy is faster and
cheaper."

Why Use Fuzzy Logic?
Here is a list of general observations about fuzzy logic:

• Fuzzy logic is conceptually easy to understand.

The mathematical concepts behind fuzzy reasoning are very simple. Fuzzy logic is a more intuitive
approach without the far-reaching complexity.

• Fuzzy logic is flexible.

With any given system, it is easy to layer on more functionality without starting again from
scratch.

• Fuzzy logic is tolerant of imprecise data.

Everything is imprecise if you look closely enough, but more than that, most things are imprecise
even on careful inspection. Fuzzy reasoning builds this understanding into the process rather than
tacking it onto the end.

• Fuzzy logic can model nonlinear functions of arbitrary complexity.

You can create a fuzzy system to match any set of input-output data. This process is made
particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
which are available in Fuzzy Logic Toolbox software.

• Fuzzy logic can be built on top of the experience of experts.

In direct contrast to neural networks, which take training data and generate opaque, impenetrable
models, fuzzy logic lets you rely on the experience of people who already understand your system.
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• Fuzzy logic can be blended with conventional control techniques.

Fuzzy systems don't necessarily replace conventional control methods. In many cases fuzzy
systems augment them and simplify their implementation.

• Fuzzy logic is based on natural language.

The basis for fuzzy logic is the basis for human communication. This observation underpins many
of the other statements about fuzzy logic. Because fuzzy logic is built on the structures of
qualitative description used in everyday language, fuzzy logic is easy to use.

The last statement is perhaps the most important one and deserves more discussion. Natural
language, which is used by ordinary people on a daily basis, has been shaped by thousands of years of
human history to be convenient and efficient. Sentences written in ordinary language represent a
triumph of efficient communication.

When Not to Use Fuzzy Logic
Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest statement is the first
one made in this introduction: fuzzy logic is a convenient way to map an input space to an output
space. If you find it's not convenient, try something else. If a simpler solution already exists, use it.
Fuzzy logic is the codification of common sense — use common sense when you implement it and you
will probably make the right decision. Many controllers, for example, do a fine job without using fuzzy
logic. However, if you take the time to become familiar with fuzzy logic, you'll see it can be a very
powerful tool for dealing quickly and efficiently with imprecision and nonlinearity.

What Can Fuzzy Logic Toolbox Software Do?
You can create and edit fuzzy inference systems with Fuzzy Logic Toolbox software. You can create
these systems using graphical tools or command-line functions, or you can generate them
automatically using either clustering or adaptive neuro-fuzzy techniques.

If you have access to Simulink software, you can easily test your fuzzy system in a block diagram
simulation environment.

The toolbox also lets you run your own stand-alone C programs directly. This is made possible by a
stand-alone Fuzzy Inference Engine that reads the fuzzy systems saved from a MATLAB session. You
can customize the stand-alone engine to build fuzzy inference into your own code. All provided code
is ANSI® compliant.
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Because of the integrated nature of the MATLAB environment, you can create your own tools to
customize the toolbox or harness it with another toolbox, such as the Control System Toolbox™, Deep
Learning Toolbox™, or Optimization Toolbox™ software.

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-8
• “Fuzzy vs. Nonfuzzy Logic” on page 1-34
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Foundations of Fuzzy Logic
Overview
The point of fuzzy logic is to map an input space to an output space, and the primary mechanism for
doing this is a list of if-then statements called rules. All rules are evaluated in parallel, and the order
of the rules is unimportant. The rules themselves are useful because they refer to variables and the
adjectives that describe those variables. Before you can build a system that interprets rules, you must
define all the terms you plan on using and the adjectives that describe them. To say that the water is
hot, you need to define the range that the water's temperature can be expected to vary as well as
what we mean by the word hot. The following diagram provides a roadmap for the fuzzy inference
process. It shows the general description of a fuzzy system on the left and a specific fuzzy system on
the right.

To summarize the concept of fuzzy inference depicted in this figure, fuzzy inference is a method that
interprets the values in the input vector and, based on some set of rules, assigns values to the output
vector.

This topic guides you through the fuzzy logic process step by step by providing an introduction to the
theory and practice of fuzzy logic.

Fuzzy Sets
Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp, clearly defined
boundary. It can contain elements with only a partial degree of membership.

To understand what a fuzzy set is, first consider the definition of a classical set. A classical set is a
container that wholly includes or wholly excludes any given element. For example, the set of days of
the week unquestionably includes Monday, Thursday, and Saturday. It just as unquestionably excludes
butter, liberty, and dorsal fins, and so on.
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This type of set is called a classical set because it has been around for a long time. It was Aristotle
who first formulated the Law of the Excluded Middle, which says X must either be in set A or in set
not-A. Another version of this law is:

Of any subject, one thing must be either asserted or denied.

To restate this law with annotations: "Of any subject (say Monday), one thing (a day of the week)
must be either asserted or denied (I assert that Monday is a day of the week)." This law demands that
opposites, the two categories A and not-A, should between them contain the entire universe.
Everything falls into either one group or the other. There is no thing that is both a day of the week
and not a day of the week.

Now, consider the set of days comprising a weekend. The following diagram attempts to classify the
weekend days.

Most would agree that Saturday and Sunday belong, but what about Friday? It feels like a part of the
weekend, but somehow it seems like it should be technically excluded. Thus, in the preceding
diagram, Friday tries its best to "straddle on the fence." Classical or normal sets would not tolerate
this kind of classification. Either something is in or it is out. Human experience suggests something
different, however, straddling the fence is part of life.

Of course individual perceptions and cultural background must be taken into account when you
define what constitutes the weekend. Even the dictionary is imprecise, defining the weekend as the
period from Friday night or Saturday to Monday morning. You are entering the realm where sharp-
edged, yes-no logic stops being helpful. Fuzzy reasoning becomes valuable exactly when you work
with how people really perceive the concept weekend as opposed to a simple-minded classification
useful for accounting purposes only. More than anything else, the following statement lays the
foundations for fuzzy logic.

In fuzzy logic, the truth of any statement becomes a matter of degree.

Any statement can be fuzzy. The major advantage that fuzzy reasoning offers is the ability to reply to
a yes-no question with a not-quite-yes-or-no answer. Humans do this kind of thing all the time (think
how rarely you get a straight answer to a seemingly simple question), but it is a rather new trick for
computers.

How does it work? Reasoning in fuzzy logic is just a matter of generalizing the familiar yes-no
(Boolean) logic. If you give true the numerical value of 1 and false the numerical value of 0, this value
indicates that fuzzy logic also permits in-between values like 0.2 and 0.7453. For instance:

Q: Is Saturday a weekend day?
A: 1 (yes, or true)
Q: Is Tuesday a weekend day?
A: 0 (no, or false)
Q: Is Friday a weekend day?
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A: 0.8 (for the most part yes, but not completely)
Q: Is Sunday a weekend day?
A: 0.95 (yes, but not quite as much as Saturday).

The following plot on the left shows the truth values for weekend-ness if you are forced to respond
with an absolute yes or no response. On the right, is a plot that shows the truth value for weekend-
ness if you are allowed to respond with fuzzy in-between values.

Technically, the representation on the right is from the domain of multivalued logic (or multivalent
logic). If you ask the question "Is X a member of set A?" the answer might be yes, no, or any one of a
thousand intermediate values in between. Thus, X might have partial membership in A. Multivalued
logic stands in direct contrast to the more familiar concept of two-valued (or bivalent yes-no) logic.

To return to the example, now consider a continuous scale time plot of weekend-ness shown in the
following plots.

By making the plot continuous, you are defining the degree to which any given instant belongs in the
weekend rather than an entire day. In the plot on the left, notice that at midnight on Friday, just as
the second hand sweeps past 12, the weekend-ness truth value jumps discontinuously from 0 to 1.
This is one way to define the weekend, and while it may be useful to an accountant, it may not really
connect with your own real-world experience of weekend-ness.

The plot on the right shows a smoothly varying curve that accounts for the fact that all of Friday, and,
to a small degree, parts of Thursday, partake of the quality of weekend-ness and thus deserve partial
membership in the fuzzy set of weekend moments. The curve that defines the weekend-ness of any
instant in time is a function that maps the input space (time of the week) to the output space
(weekend-ness). Specifically it is known as a membership function. See “Membership Functions” on
page 1-11 for a more detailed discussion.

As another example of fuzzy sets, consider the question of seasons. What season is it right now? In
the northern hemisphere, summer officially begins at the exact moment in the earth's orbit when the
North Pole is pointed most directly toward the sun. It occurs exactly once a year, in late June. Using
the astronomical definitions for the season, you get sharp boundaries as shown on the left in the
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figure that follows. But what you experience as the seasons vary more or less continuously as shown
on the right in the following figure (in temperate northern hemisphere climates).

Membership Functions
A membership function (MF) is a curve that defines how each point in the input space is mapped to a
membership value (or degree of membership) between 0 and 1. The input space is sometimes
referred to as the universe of discourse, a fancy name for a simple concept.

One of the most commonly used examples of a fuzzy set is the set of tall people. In this case, the
universe of discourse is all potential heights, say from three feet to nine feet, and the word tall would
correspond to a curve that defines the degree to which any person is tall. If the set of tall people is
given the well-defined (crisp) boundary of a classical set, you might say all people taller than six feet
are officially considered tall. However, such a distinction is clearly absurd. It may make sense to
consider the set of all real numbers greater than six because numbers belong on an abstract plane,
but when we want to talk about real people, it is unreasonable to call one person short and another
one tall when they differ in height by the width of a hair.

If the kind of distinction shown previously is unworkable, then what is the right way to define the set
of tall people? Much as with the plot of weekend days, the figure following shows a smoothly varying
curve that passes from not-tall to tall. The output-axis is a number known as the membership value
between 0 and 1. The curve is known as a membership function and is often given the designation of
µ. This curve defines the transition from not tall to tall. Both people are tall to some degree, but one
is significantly less tall than the other.
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Subjective interpretations and appropriate units are built right into fuzzy sets. If you say "She's tall,"
the membership function tall should already take into account whether you are referring to a six-year-
old or a grown woman. Similarly, the units are included in the curve. Certainly it makes no sense to
say "Is she tall in inches or in meters?"

Membership Functions in Fuzzy Logic Toolbox Software

The only condition a membership function must really satisfy is that it must vary between 0 and 1.
The function itself can be an arbitrary curve whose shape we can define as a function that suits us
from the point of view of simplicity, convenience, speed, and efficiency.

A classical set might be expressed as

A = x x > 6

A fuzzy set is an extension of a classical set. If X is the universe of discourse and its elements are
denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs.

A x, μA x x ∈ X

A = {x, µA(x) | x ∈ X}

µA(x) is called the membership function (or MF) of x in A. The membership function maps each
element of X to a membership value between 0 and 1.

The toolbox includes 11 built-in membership function types. These 11 functions are, in turn, built
from several basic functions:

• Piece-wise linear functions
• Gaussian distribution function
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• Sigmoid curve
• Quadratic and cubic polynomial curves

For detailed information on any of the membership functions mentioned next, see the corresponding
reference page.

The simplest membership functions are formed using straight lines. Of these, the simplest is the
triangular membership function, and it has the function name trimf. This function is nothing more
than a collection of three points forming a triangle. The trapezoidal membership function, trapmf,
has a flat top and really is just a truncated triangle curve. These straight line membership functions
have the advantage of simplicity.

Two membership functions are built on the Gaussian distribution curve: a simple Gaussian curve and
a two-sided composite of two different Gaussian curves. The two functions are gaussmf and
gauss2mf.

The generalized bell membership function is specified by three parameters and has the function name
gbellmf. The bell membership function has one more parameter than the Gaussian membership
function, so it can approach a non-fuzzy set if the free parameter is tuned. Because of their
smoothness and concise notation, Gaussian and bell membership functions are popular methods for
specifying fuzzy sets. Both of these curves have the advantage of being smooth and nonzero at all
points.

Although the Gaussian membership functions and bell membership functions achieve smoothness,
they are unable to specify asymmetric membership functions, which are important in certain
applications. Next, you define the sigmoidal membership function, which is either open left or right.
Asymmetric and closed (i.e. not open to the left or right) membership functions can be synthesized
using two sigmoidal functions, so in addition to the basic sigmf, you also have the difference
between two sigmoidal functions, dsigmf, and the product of two sigmoidal functions psigmf.
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Polynomial based curves account for several of the membership functions in the toolbox. Three
related membership functions are the Z, S, andPi curves, all named because of their shape. The
function zmf is the asymmetrical polynomial curve open to the left, smf is the mirror-image function
that opens to the right, and pimf is zero on both extremes with a rise in the middle.

There is a very wide selection to choose from when you're selecting a membership function. You can
also create your own membership functions with the toolbox. However, if a list based on expanded
membership functions seems too complicated, just remember that you could probably get along very
well with just one or two types of membership functions, for example the triangle and trapezoid
functions. The selection is wide for those who want to explore the possibilities, but expansive
membership functions are not necessary for good fuzzy inference systems. Finally, remember that
more details are available on all these functions in the reference section.

Summary of Membership Functions

• Fuzzy sets describe vague concepts (e.g., fast runner, hot weather, weekend days).
• A fuzzy set admits the possibility of partial membership in it. (e.g., Friday is sort of a weekend day,

the weather is rather hot).
• The degree an object belongs to a fuzzy set is denoted by a membership value between 0 and 1.

(e.g., Friday is a weekend day to the degree 0.8).
• A membership function associated with a given fuzzy set maps an input value to its appropriate

membership value.

Logical Operations
Now that you understand the fuzzy inference, you need to see how fuzzy inference connects with
logical operations.

The most important thing to realize about fuzzy logical reasoning is the fact that it is a superset of
standard Boolean logic. In other words, if you keep the fuzzy values at their extremes of 1 (completely
true), and 0 (completely false), standard logical operations will hold. As an example, consider the
following standard truth tables.

1 Getting Started

1-14



Now, because in fuzzy logic the truth of any statement is a matter of degree, can these truth tables be
altered? The input values can be real numbers between 0 and 1. What function preserves the results
of the AND truth table (for example) and also extend to all real numbers between 0 and 1?

One answer is the min operation. That is, resolve the statement A AND B, where A and B are limited
to the range (0,1), by using the function min(A,B). Using the same reasoning, you can replace the OR
operation with the max function, so that A OR B becomes equivalent to max(A,B). Finally, the
operation NOT A becomes equivalent to the operation 1− A. Notice how the previous truth table is
completely unchanged by this substitution.

Moreover, because there is a function behind the truth table rather than just the truth table itself, you
can now consider values other than 1 and 0.

The next figure uses a graph to show the same information. In this figure, the truth table is converted
to a plot of two fuzzy sets applied together to create one fuzzy set. The upper part of the figure
displays plots corresponding to the preceding two-valued truth tables, while the lower part of the
figure displays how the operations work over a continuously varying range of truth values A and B
according to the fuzzy operations you have defined.
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Given these three functions, you can resolve any construction using fuzzy sets and the fuzzy logical
operation AND, OR, and NOT.

Additional Fuzzy Operators

In this case, you defined only one particular correspondence between two-valued and multivalued
logical operations for AND, OR, and NOT. This correspondence is by no means unique.

In more general terms, you are defining what are known as the fuzzy intersection or conjunction
(AND), fuzzy union or disjunction (OR), and fuzzy complement (NOT). The classical operators for
these functions are: AND = min, OR = max, and NOT = additive complement. Typically, most fuzzy
logic applications make use of these operations and leave it at that. In general, however, these
functions are arbitrary to a surprising degree. Fuzzy Logic Toolbox software uses the classical
operator for the fuzzy complement as shown in the previous figure, but also enables you to customize
the AND and OR operators.

The intersection of two fuzzy sets A and B is specified in general by a binary mapping T, which
aggregates two membership functions as follows:

μA∩ B x = T μA x , μB x

For example, the binary operator T may represent the multiplication of µA(x) and µB(x). These fuzzy
intersection operators, which are usually referred to as T-norm (Triangular norm) operators, meet the
following basic requirements:

A T-norm operator is a binary mapping T(.,.) with the following properties:

• Boundary — T 0, 0 = 0, T a, 1 = T 1, a = a
• Monotonicity — T a, b ≤ T c, d  if a ≤ c and b ≤ d
• Commutativity — T a, b = T b, a
• Associativity — T a, T b, c = T T a, b , c

The first requirement imposes the correct generalization to crisp sets. The second requirement
implies that a decrease in the membership values in A or B cannot produce an increase in the
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membership value in A intersection B. The third requirement indicates that the operator is indifferent
to the order of the fuzzy sets to be combined. Finally, the fourth requirement allows us to take the
intersection of any number of sets in any order of pair-wise groupings.

Like fuzzy intersection, the fuzzy union operator is specified in general by a binary mapping S:

μA∪ B x = S μA x , μB x

For example, the binary operator S can represent the addition of µA(x) and µB(x). These fuzzy union
operators, which are often referred to as T-conorm (or S-norm) operators, must satisfy the following
basic requirements:

A T-conorm (or S-norm) operator is a binary mapping S(.,.) with the following properties:

• Boundary — S 1, 1 = 1, S a, 0 = S 0, a = a
• Monotonicity — S a, b ≤ S c, d  if a ≤ c and b ≤ d
• Commutativity — S a, b = S b, a
• Associativity — S a, S b, c = S S a, b , c

Several parameterized T-norms and dual T-conorms have been proposed in the past, such as those of
Yager [10], Dubois and Prade [1], Schweizer and Sklar [7], and Sugeno [8]. Each of these provides a
way to vary the gain on the function so that it can be very restrictive or very permissive.

If-Then Rules
Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-then rule statements
are used to formulate the conditional statements that comprise fuzzy logic.

A single fuzzy if-then rule assumes the form

If x is A, then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges (universes of discourse) X and
Y, respectively. The if-part of the rule "x is A" is called the antecedent or premise, while the then-part
of the rule "y is B" is called the consequent or conclusion. An example of such a rule might be
If service is good then tip is average

The concept good is represented as a number between 0 and 1, and so the antecedent is an
interpretation that returns a single number between 0 and 1. Conversely, average is represented as a
fuzzy set, and so the consequent is an assignment that assigns the entire fuzzy set B to the output
variable y. In the if-then rule, the word is gets used in two entirely different ways depending on
whether it appears in the antecedent or the consequent. In MATLAB terms, this usage is the
distinction between a relational test using "==" and a variable assignment using the "=" symbol. A
less confusing way of writing the rule would be

If service == good, then tip = average

In general, the input to an if-then rule is the current value for the input variable (in this case, service)
and the output is an entire fuzzy set (in this case, average). This set will later be defuzzified,
assigning one value to the output. The concept of defuzzification is described in the next section.

Interpreting an if-then rule involves two steps:

 Foundations of Fuzzy Logic

1-17



• Evaluation of the antecedent — Fuzzifying the inputs and applying any necessary fuzzy operators.
• Application of the result to the consequent.

The second step is known as implication. For an if-then rule, the antecedent, p, implies the
consequent, q. In binary logic, if p is true, then q is also true (p → q). In fuzzy logic, if p is true to
some degree of membership, then q is also true to the same degree (0.5p → 0.5q). In both cases, if p
is false, then the value of q is undetermined.

The antecedent of a rule can have multiple parts.

If sky is gray and wind is strong and barometer is falling, then ...

In this case all parts of the antecedent are calculated simultaneously and resolved to a single number
using the logical operators described in the preceding section. The consequent of a rule can also have
multiple parts.

If temperature is cold, then hot water valve is open and cold water valve is shut

In this case, all consequents are affected equally by the result of the antecedent. How is the
consequent affected by the antecedent? The consequent specifies a fuzzy set be assigned to the
output. The implication function then modifies that fuzzy set to the degree specified by the
antecedent. The most common ways to modify the output fuzzy set are truncation using the min
function (where the fuzzy set is truncated as shown in the following figure) or scaling using the prod
function (where the output fuzzy set is squashed). Both are supported by the toolbox, but you use
truncation for the examples in this section.
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Summary of If-Then Rules

Interpreting if-then rules is a three-part process. This process is explained in detail in the next
section:

1 Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree of membership
between 0 and 1. If there is only one part to the antecedent, then this is the degree of support for
the rule.

2 Apply fuzzy operator to multiple part antecedents: If there are multiple parts to the
antecedent, apply fuzzy logic operators and resolve the antecedent to a single number between 0
and 1. This is the degree of support for the rule.

3 Apply implication method: Use the degree of support for the entire rule to shape the output
fuzzy set. The consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set
is represented by a membership function that is chosen to indicate the qualities of the
consequent. If the antecedent is only partially true, (i.e., is assigned a value less than 1), then the
output fuzzy set is truncated according to the implication method.

In general, one rule alone is not effective. Two or more rules that can play off one another are
needed. The output of each rule is a fuzzy set. The output fuzzy sets for each rule are then
aggregated into a single output fuzzy set. Finally the resulting set is defuzzified, or resolved to a
single number. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14 shows how the
whole process works from beginning to end for a particular type of fuzzy inference system called a
Mamdani type.
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Fuzzy Inference Process
Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy
logic. The mapping then provides a basis from which decisions can be made, or patterns discerned.
The process of fuzzy inference involves all the pieces that are described in “Membership Functions”
on page 1-11, “Logical Operations” on page 1-14, and “If-Then Rules” on page 1-17.

This section describes the fuzzy inference process and uses the example of the two-input, one-output,
three-rule tipping problem from “The Basic Tipping Problem” on page 2-16. The basic structure of
this example is shown in the following diagram:

Information flows from left to right, from two inputs to a single output. The parallel nature of the
rules is an important aspect of fuzzy logic systems. Instead of sharp switching between modes based
on breakpoints, logic flows smoothly from regions where one rule or another dominates.

Fuzzy inference process comprises of five parts:

• Fuzzification of the input variables on page 1-21
• Application of the fuzzy operator (AND or OR) in the antecedent on page 1-22
• Implication from the antecedent to the consequent on page 1-23
• Aggregation of the consequents across the rules on page 1-24
• Defuzzification on page 1-24

A fuzzy inference diagram on page 1-25 displays all parts of the fuzzy inference process — from
fuzzification through defuzzification.

Fuzzify Inputs
The first step is to take the inputs and determine the degree to which they belong to each of the
appropriate fuzzy sets via membership functions (fuzzification). In Fuzzy Logic Toolbox software, the
input is always a crisp numerical value limited to the universe of discourse of the input variable (in
this case, the interval from 0 through 10) . The output is a fuzzy degree of membership in the
qualifying linguistic set (always the interval from 0 through 1). Fuzzification of the input amounts to
either a table lookup or a function evaluation.
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This example is built on three rules, and each of the rules depends on resolving the inputs into
several different fuzzy linguistic sets: service is poor, service is good, food is rancid, food is delicious,
and so on. Before the rules can be evaluated, the inputs must be fuzzified according to each of these
linguistic sets. For example, to what extent is the food delicious? The following figure shows how well
the food at the hypothetical restaurant (rated on a scale from 0 through 10) qualifies as the linguistic
variable delicious using a membership function. In this case, we rate the food as an 8, which, given
the graphical definition of delicious, corresponds to µ = 0.7 for the delicious membership function.

In this manner, each input is fuzzified over all the qualifying membership functions required by the
rules.

Apply Fuzzy Operator
After the inputs are fuzzified, you know the degree to which each part of the antecedent is satisfied
for each rule. If the antecedent of a rule has more than one part, the fuzzy operator is applied to
obtain one number that represents the result of the rule antecedent. This number is then applied to
the output function. The input to the fuzzy operator is two or more membership values from fuzzified
input variables. The output is a single truth value.

As is described in “Logical Operations” on page 1-14 section, any number of well-defined methods
can fill in for the AND operation or the OR operation. In the toolbox, two built-in AND methods are
supported: min (minimum) and prod (product). Two built-in OR methods are also supported: max
(maximum), and the probabilistic OR method probor. The probabilistic OR method (also known as the
algebraic sum) is calculated according to the equation:

probor(a,b) = a + b - ab

In addition to these built-in methods, you can create your own methods for AND and OR by writing
any function and setting that to be your method of choice.

The following figure shows the OR operator max at work, evaluating the antecedent of the rule 3 for
the tipping calculation. The two different pieces of the antecedent (service is excellent and food is
delicious) yielded the fuzzy membership values 0.0 and 0.7 respectively. The fuzzy OR operator simply
selects the maximum of the two values, 0.7, and the fuzzy operation for rule 3 is complete. The
probabilistic OR method would still result in 0.7.
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Apply Implication Method
Before applying the implication method, you must determine the rule weight. Every rule has a weight
(a number from 0 through 1), which is applied to the number given by the antecedent. Generally, this
weight is 1 (as it is for this example) and thus has no effect on the implication process. However, you
can decrease the effect of one rule relative to the others by changing its weight value to something
other than 1.

After proper weighting has been assigned to each rule, the implication method is implemented. A
consequent is a fuzzy set represented by a membership function, which weights appropriately the
linguistic characteristics that are attributed to it. The consequent is reshaped using a function
associated with the antecedent (a single number). The input for the implication process is a single
number given by the antecedent, and the output is a fuzzy set. Implication is implemented for each
rule. Two built-in methods are supported, and they are the same functions that are used by the AND
method: min (minimum), which truncates the output fuzzy set, and prod (product), which scales the
output fuzzy set.

Note Sugeno systems always use the product implication method.
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Aggregate All Outputs
Since decisions are based on testing all the rules in a FIS, the rule outputs must be combined in some
manner. Aggregation is the process by which the fuzzy sets that represent the outputs of each rule
are combined into a single fuzzy set. Aggregation only occurs once for each output variable, which is
before the final defuzzification step. The input of the aggregation process is the list of truncated
output functions returned by the implication process for each rule. The output of the aggregation
process is one fuzzy set for each output variable.

As long as the aggregation method is commutative, then the order in which the rules are executed is
unimportant. Three built-in methods are supported:

• max (maximum)
• probor (probabilistic OR)
• sum (sum of the rule output sets)

In the following diagram, all three rules are displayed to show how the rule outputs are aggregated
into a single fuzzy set whose membership function assigns a weighting for every output (tip) value.

Note Sugeno systems always use the sum aggregation method.

Defuzzify
The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set) and the output
is a single number. As much as fuzziness helps the rule evaluation during the intermediate steps, the
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final desired output for each variable is generally a single number. However, the aggregate of a fuzzy
set encompasses a range of output values, and so must be defuzzified to obtain a single output value
from the set.

There are five built-in defuzzification methods supported: centroid, bisector, middle of maximum (the
average of the maximum value of the output set), largest of maximum, and smallest of maximum.
Perhaps the most popular defuzzification method is the centroid calculation, which returns the center
of area under the curve, as shown in the following:

While the aggregate output fuzzy set covers a range from 0% though 30%, the defuzzified value is
between 5% and 25%. These limits correspond to the centroids of the cheap and generous
membership functions, respectively.

Fuzzy Inference Diagram
The fuzzy inference diagram is the composite of all the smaller diagrams presented so far in this
section. It simultaneously displays all parts of the fuzzy inference process you have examined.
Information flows through the fuzzy inference diagram as shown in the following figure.
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In this figure, the flow proceeds up from the inputs in the lower left, across each row, and then down
the rule outputs in the lower right. This compact flow shows everything at once, from linguistic
variable fuzzification all the way through defuzzification of the aggregate output.

The following figure shows the actual full-size fuzzy inference diagram. Using a fuzzy inference
diagram, you can learn a lot about how the system operates. For instance, for the particular inputs in
this diagram, you can see that the implication method is truncation with the min function. The max
function is used for the fuzzy OR operation. Rule 3 (the bottom-most row in the diagram shown
previously) has the strongest influence on the output. The Rule Viewer described in “The Rule
Viewer” on page 2-27 is an implementation of the fuzzy inference diagram.

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-8
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Membership Function Gallery
This example shows how to display 11 membership functions supported in the Fuzzy Logic Toolbox�.

Define membership functions.

mf = [...
    fismf('trapmf',[-19 -17 -12 -7]) ...
    fismf('gbellmf',[3 4 -8]) ...
    fismf('trimf',[-9 -1 2]) ...
    fismf('gaussmf',[3 5]) ...
    fismf('gauss2mf',[3 10 5 13]) ...
    fismf('smf',[11 17]) ...
    fismf('zmf',[-18 -10]) ...
    fismf('psigmf',[2 -11 -5 -4]) ...
    fismf('dsigmf',[5 -3 1 5]) ...
    fismf('pimf',[0 7 11 15]) ...
    fismf('sigmf',[2 15]) ...
    ];

For more information on the different membership functions and their parameters, see their
respective function reference pages.

Evaluate the membership functions.

x = linspace(-20,20,201);
y = evalmf(mf,x);

Plot the evaluated membership functions with labels.

subplot(2,1,1);
plot(x,y(1:6,:)');
axis([min(x) max(x) 0 1.2]);
text((mf(1).Parameters(2)+mf(1).Parameters(3))/2,1.1,mf(1).Type,...
    'horizon','center');
text(mf(2).Parameters(3),1.1,mf(2).Type,...
    'horizon','center');
text(mf(3).Parameters(2),1.1,mf(3).Type,...
    'horizon','center');
text(mf(4).Parameters(2),1.1,mf(4).Type,...
    'horizon','center');
text((mf(5).Parameters(2)+mf(5).Parameters(4))/2,1.1,mf(5).Type,...
    'horizon','center');
text(mf(6).Parameters(2), 1.1,mf(6).Type,...
    'horizon','center');
h_gca = gca;
h_gca.XTick = [];

subplot(2,1,2);
plot(x,y(7:11,:)');
axis([min(x) max(x) 0 1.2]);
text(mf(7).Parameters(1),1.1,mf(7).Type,...
    'horizon','center');
text((mf(8).Parameters(2)+mf(8).Parameters(4))/2,1.1,mf(8).Type,...
    'horizon','center');
text((mf(9).Parameters(2)+mf(9).Parameters(4))/2,1.1,mf(9).Type,...
    'horizon','center');
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text((mf(10).Parameters(2)+mf(10).Parameters(3))/2,1.1,mf(10).Type,...
    'horizon','center');
text(mf(11).Parameters(2),1.1,mf(11).Type,...
    'horizon','center');
h_gca =  gca;
h_gca.XTick = [];

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-8
• “Fuzzy Inference Process” on page 1-21
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Defuzzification Methods
This example describes the built-in methods for defuzzifying the output fuzzy set of a type-1 Mamdani
fuzzy inference system.

Consider the following output fuzzy set, which is an aggregation of three scaled trapezoidal
membership functions.

x = 0:0.1:20;

mf1 = trapmf(x,[0 2 8 12]);
mf2 = trapmf(x,[5 7 12 14]);
mf3 = trapmf(x,[12 13 18 19]);
mf = max(0.5*mf2,max(0.9*mf1,0.1*mf3));

figure('Tag','defuzz')
plot(x,mf,'LineWidth',3)
h_gca = gca;
h_gca.YTick = [0 .5 1] ;
ylim([-1 1])

Fuzzy Logic Toolbox™ software supports five built-in methods for computing a single crisp output
value for such a fuzzy set.

• Centroid
• Bisector
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• Middle of maximum
• Smallest of maximum
• Largest of maximum

You can also define your own custom defuzzification method. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-40.

Centroid

Centroid defuzzification returns the center of gravity of the fuzzy set along the x-axis. If you think of
the area as a plate with uniform thickness and density, the centroid is the point along the x-axis about
which the fuzzy set would balance. The centroid is computed using the following formula, where μ xi
is the membership value for point xi in the universe of discourse.

xCentroid =
∑iμ xi xi
∑iμ xi

Compute the centroid of the fuzzy set.

xCentroid = defuzz(x,mf,'centroid');

Indicate the centroid defuzzification result on the original plot.

hCentroid = line([xCentroid xCentroid],[-0.2 1.2],'Color','k'); 
tCentroid = text(xCentroid,-0.2,' centroid','FontWeight','bold');
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Bisector

The bisector method finds the vertical line that divides the fuzzy set into two sub-regions of equal
area. It is sometimes, but not always, coincident with the centroid line.

xBisector =  defuzz(x,mf,'bisector');

Indicate the bisector result on the original plot, and gray out the centroid result.

hBisector = line([xBisector xBisector],[-0.4 1.2],'Color','k'); 
tBisector = text(xBisector,-0.4,' bisector','FontWeight','bold');
gray = 0.7*[1 1 1];
hCentroid.Color = gray;
tCentroid.Color = gray;

Middle, Smallest, and Largest of Maximum

MOM, SOM, and LOM stand for middle, smallest, and largest of maximum, respectively. In this
example, since the aggregate fuzzy set has a plateau at its maximum value, the MOM, SOM, and LOM
defuzzification results have distinct values. If the aggregate fuzzy set has a unique maximum, then
MOM, SOM, and LOM all produce the same value.

xMOM = defuzz(x,mf,'mom');
xSOM = defuzz(x,mf,'som');
xLOM = defuzz(x,mf,'lom');

Indicate the MOM, SOM, and LOM results on the originial plot, and gray out the bisector result.
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hMOM = line([xMOM xMOM],[-0.7 1.2],'Color','k'); 
tMOM = text(xMOM,-0.7,' MOM','FontWeight','bold');
hSOM = line([xSOM xSOM],[-0.7 1.2],'Color','k'); 
tSOM = text(xSOM,-0.7,' SOM','FontWeight','bold');
hLOM = line([xLOM xLOM],[-0.7 1.2],'Color','k'); 
tLOM = text(xLOM,-0.7,' LOM','FontWeight','bold');
hBisector.Color = gray;
tBisector.Color = gray;

Choosing Defuzzification Method

In general, using the default centroid method is good enough for most applications. Once you have
created your initial fuzzy inference system, you can try other defuzzification methods to see if any
improve your inference results.

Highlight the centroid result, and gray out the MOM, SOM, and LOM results.

hCentroid.Color = 'red';
tCentroid.Color = 'red';
hMOM.Color = gray;
tMOM.Color = gray;
hSOM.Color = gray;
tSOM.Color = gray;
hLOM.Color = gray;
tLOM.Color = gray;
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See Also

More About
• “Foundations of Fuzzy Logic” on page 1-8
• “Fuzzy Inference Process” on page 1-21
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Fuzzy vs. Nonfuzzy Logic
Basic Tipping Problem

To illustrate the value of fuzzy logic, examine both linear and fuzzy approaches to the following
problem:

What is the right amount to tip your waitperson?

First, work through this problem the conventional (nonfuzzy) way, writing MATLAB® commands that
spell out linear and piecewise-linear relations. Then, look at the same system using fuzzy logic.

Basic Tipping Problem. Given a number from 0 through 10 that represents the quality of service at
a restaurant (where 10 is excellent), what should the tip be?

This problem is based on tipping as it is typically practiced in the United States. An average tip for a
meal in the US is 15%, though the actual amount can vary depending on the quality of the service
provided.

Nonfuzzy Approach

Begin with the simplest possible relationship. Suppose that the tip always equals 15% of the total bill.

service = 0:.5:10;
tip = 0.15*ones(size(service));
plot(service,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])
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This relationship does not account for the quality of the service, so you must add a term to the
equation. Since service is rated on a scale from 0 through 10, you the tip increase linearly from 5% if
the service is bad to 25% if the service is excellent. Now the relation looks like the following plot:

tip = (.20/10)*service+0.05;
plot(service,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])
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The formula does what you want it to do, and is straight forward. However, you may want the tip to
reflect the quality of the food as well. This extension of the problem is defined as follows.

Extended Tipping Problem. Given two sets of numbers from 0 through 10 (where 10 is excellent)
that respectively represent the quality of the service and the quality of the food at a restaurant, what
should the tip be?

See how the formula is affected now that you have added another variable.

food = 0:.5:10;
[F,S] = meshgrid(food,service);
tip = (0.20/20).*(S+F)+0.05;
surf(S,F,tip)
xlabel('Service')
ylabel('Food')
zlabel('Tip')
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In this case, the results look satisfactory, but when you look at them closely, they do not seem right.
Suppose that you want the service to be a more important factor than the food quality. Specify that
service accounts for 80% of the overall tipping grade and the food makes up the other 20%.

servRatio = 0.8;
tip = servRatio*(0.20/10*S+0.05) + ...
    (1-servRatio)*(0.20/10*F+0.05);
surf(S,F,tip)
xlabel('Service')
ylabel('Food')
zlabel('Tip')
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The response is still somehow too uniformly linear. Suppose that you want more of a flat response in
the middle, that is, you want to give a 15% tip in general, but want to also specify a variation if the
service is exceptionally good or bad. This factor, in turn, means that the previous linear mappings no
longer apply. You can still use the linear calculation with a piecewise linear construction. Now, return
to the one-dimensional problem of just considering the service. You can create a simple conditional
tip assignment using logical indexing.

tip = zeros(size(service));
tip(service<3) = (0.10/3)*service(service<3)+0.05;
tip(service>=3 & service<7) = 0.15;
tip(service>=7 & service<=10) = ...
    (0.10/3)*(service(service>=7 & service<=10)-7)+0.15;
plot(service,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])
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Suppose that you extend this approach to two dimensions, where you account for food quality again.

servRatio = 0.8;
tip = zeros(size(S));
tip(S<3) = ((0.10/3)*S(S<3)+0.05)*servRatio + ...
    (1-servRatio)*(0.20/10*F(S<3)+0.05);
tip(S>=3 & S<7) = (0.15)*servRatio + ...
    (1-servRatio)*(0.20/10*F(S>=3 & S<7)+0.05);
tip(S>=7 & S<=10) = ((0.10/3)*(S(S>=7 & S<=10)-7)+0.15)*servRatio + ...
    (1-servRatio)*(0.20/10*F(S>=7 & S<=10)+0.05);
surf(S,F,tip)
xlabel('Service')
ylabel('Food')
zlabel('Tip')
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The plot looks good, but the function is surprisingly complicated. It is even not apparent how the
algorithm works to someone who did not see the original design process.

Fuzzy Logic Approach

In general, you want to capture the essentials of this problem, leaving aside all the factors that could
be arbitrary. If you make a list of what really matters in this problem, you could end up with the
following rule descriptions.

Tipping Problem Rules - Service Factor

• If service is poor, then tip is cheap
• If service is good, then tip is average
• If service is excellent, then tip is generous

The order in which the rules are presented here is arbitrary. It does not matter which rules come
first. To include the effect of food quality on the tip, add the following two rules.

Tipping Problem Rules - Food Factor

• If food is rancid, then tip is cheap
• If food is delicious, then tip is generous

You can combine the two different lists of rules into one list of three rules like so.

Tipping Problem Rules - Both Service and Food Factors
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• If service is poor or the food is rancid, then tip is cheap
• If service is good, then tip is average
• If service is excellent or food is delicious, then tip is generous

These three rules are the core of your solution and they correspond to the rules for a fuzzy logic
system. When you give mathematical meaning to the linguistic variables (what is an average tip, for
example) you have a complete fuzzy inference system. The methodology of fuzzy logic must also
consider:

• How are the rules all combined?
• How do I define mathematically what an average tip is?

Problem Solution

The following plot represents the fuzzy logic system that solves the tipping problem.

gensurf(readfis('tipper'))

This plot was generated by the three rules that accounted for both service and food factors.

Observations Consider some observations about the example so far. You found a piecewise linear
relation that solved the problem. It worked, but it was problematic to derive, and when you wrote it
down as code, it was not easy to interpret. Conversely, the fuzzy logic system is based on some
common sense statements. Also, you were able to add two more rules to the list that influenced the
shape of the overall output without needing to undo what had already been done.

 Fuzzy vs. Nonfuzzy Logic

1-41



Moreover, by using fuzzy logic rules, the maintenance of the structure of the algorithm decouples
along fairly clean lines. The notion of an average tip can change from day to day, city to city, country
to country. However, the underlying logic is the same: if the service is good, the tip should be
average.

Recalibrating the Method You can recalibrate the method quickly by simply shifting the fuzzy set
that defines average without rewriting the fuzzy logic rules.

You can shift lists of piecewise linear functions, but there is a greater likelihood for difficult
recalibration.

In the following example, the piecewise linear tipping problem is rewritten to make it more generic. It
performs the same function as before, only now the constants can be easily changed.

lowTip = 0.05;
averTip = 0.15;
highTip = 0.25;
tipRange = highTip-lowTip;
badService = 0;
okayService = 3; 
goodService = 7;
greatService = 10;
serviceRange = greatService-badService;
badFood = 0;
greatFood = 10;
foodRange = greatFood-badFood;

% If service is poor or food is rancid, tip is cheap
if service<okayService
    tip = (((averTip-lowTip)/(okayService-badService)) ...
        *service+lowTip)*servRatio + ...
        (1-servRatio)*(tipRange/foodRange*food+lowTip);

% If service is good, tip is average
elseif service<goodService
    tip = averTip*servRatio + (1-servRatio)* ...
        (tipRange/foodRange*food+lowTip);

% If service is excellent or food is delicious, tip is generous
else
    tip = (((highTip-averTip)/ ...
        (greatService-goodService))* ...
        (service-goodService)+averTip)*servRatio + ...
        (1-servRatio)*(tipRange/foodRange*food+lowTip);
end

As with all code, the more generality that is introduced, the less precise the algorithm becomes. You
can improve clarity by adding more comments, or perhaps rewriting the algorithm in slightly more
self-evident ways. But, the piecewise linear methodology is not the optimal way to resolve this issue.

If you remove everything from the algorithm except for three comments, what remain are exactly the
fuzzy logic rules you previously wrote down.

• If service is poor or food is rancid, tip is cheap
• If service is good, tip is average
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• If service is excellent or food is delicious, tip is generous

Fuzzy logic uses language that is clear to you and that also has meaning to the computer, which is
why it is a successful technique for bridging the gap between people and machines.

By making the equations as simple as possible (linear) you make things simpler for the machine, but
more complicated for you. However, the limitation is no longer the computer - it is your mental model
of what the computer is doing. Fuzzy logic lets the machine work with your preferences rather than
the other way around.

See Also

Related Examples
• “Build Fuzzy Systems at the Command Line” on page 2-31
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
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Fuzzy Inference System Modeling

• “Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
• “Type-2 Fuzzy Inference Systems” on page 2-7
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
• “Build Fuzzy Systems at the Command Line” on page 2-31
• “Build Fuzzy Systems Using Custom Functions” on page 2-40
• “Fuzzy Trees” on page 2-52
• “Fuzzy PID Control with Type-2 FIS” on page 2-58
• “Fuzzy Logic Image Processing” on page 2-72
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Mamdani and Sugeno Fuzzy Inference Systems
Fuzzy Logic Toolboxsoftware supports two types of fuzzy inference systems:

• Mamdani systems
• Sugeno systems

Fuzzy Inference System Advantages
Mamdani • Intuitive

• Well-suited to human input
• More interpretable rule base
• Have widespread acceptance

Sugeno • Computationally efficient
• Work well with linear techniques, such as PID control
• Work well with optimization and adaptive techniques
• Guarantee output surface continuity
• Well-suited to mathematical analysis

Mamdani Fuzzy Inference Systems
Mamdani fuzzy inference was first introduced as a method to create a control system by synthesizing
a set of linguistic control rules obtained from experienced human operators [1]. In a Mamdani
system, the output of each rule is a fuzzy set.

Since Mamdani systems have more intuitive and easier to understand rule bases, they are well-suited
to expert system applications where the rules are created from human expert knowledge, such as
medical diagnostics.

The inference process of a Mamdani system is described in “Fuzzy Inference Process” on page 1-21
and summarized in the following figure.
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The output of each rule is a fuzzy set derived from the output membership function and the
implication method of the FIS. These output fuzzy sets are combined into a single fuzzy set using the
aggregation method of the FIS. Then, to compute a final crisp output value, the combined output
fuzzy set is defuzzified using one of the methods described in “Defuzzification Methods” on page 1-
29.

Sugeno Fuzzy Inference Systems
Sugeno fuzzy inference, also referred to as Takagi-Sugeno-Kang fuzzy inference, uses singleton
output membership functions that are either constant or a linear function of the input values. The
defuzzification process for a Sugeno system is more computationally efficient compared to that of a
Mamdani system, since it uses a weighted average or weighted sum of a few data points rather than
compute a centroid of a two-dimensional area. [2]

You can convert a Mamdani system into a Sugeno system using the convertToSugeno function. The
resulting Sugeno system has constant output membership functions that correspond to the centroids
of the Mamdani output membership functions.

Each rule in a Sugeno system operates as shown in the following diagram, which shows a two-input
system with input values x and y.
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Each rule generates two values:

• zi — Rule output level, which is either a constant value or a linear function of the input values:

zi = aix + biy + ci

Here, x and y are the values of input 1 and input 2, respectively, and ai, bi, and ci are constant
coefficients. For a zero-order Sugeno system, zi is a constant (a = b = 0).

• wi — Rule firing strength derived from the rule antecedent

wi = AndMethod(F1(x), F2(y))

Here, F1(...) and F2(...) are the membership functions for inputs 1 and 2, respectively.

The output of each rule is the weighted output level, which is the product of wi and zi.

The easiest way to visualize first-order Sugeno systems (a and b are nonzero) is to think of each rule
as defining the location of a moving singleton. That is, the singleton output spikes can move around in
a linear fashion within the output space, depending on the input values. The rule firing strength then
defines the size of the singleton spike.

The final output of the system is the weighted average over all rule outputs:

Final Output = 
∑
i=1

N
wizi

∑
i = 1

N
wi

where N is the number of rules.

The following figure shows the fuzzy inference process for a Sugeno system.
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Note Sugeno systems always use product implication and sum aggregation.

Because of the linear dependence of each rule on the input variables, the Sugeno method is ideal for
acting as an interpolating supervisor of multiple linear controllers that are to be applied, respectively,
to different operating conditions of a dynamic nonlinear system. For example, the performance of an
aircraft may change dramatically with altitude and Mach number. Linear controllers, though easy to
compute and suited to any given flight condition, must be updated regularly and smoothly to keep up
with the changing state of the flight vehicle. A Sugeno fuzzy inference system is suited to the task of
smoothly interpolating the linear gains that would be applied across the input space; it is a natural
and efficient gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear systems by
interpolating between multiple linear models.

References
[1] Mamdani, E.H. and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic

controller," International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13, 1975.

[2] Sugeno, M., Industrial applications of fuzzy control, Elsevier Science Pub. Co., 1985.

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-8
• “Fuzzy Inference Process” on page 1-21
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• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
• “Build Fuzzy Systems at the Command Line” on page 2-31
• “Build Fuzzy Systems Using Custom Functions” on page 2-40
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Type-2 Fuzzy Inference Systems
For any value in the universe of discourse, a traditional type-1 membership function has a single
membership value. Therefore, while a type-1 membership function models the degree of membership
in a given linguistic set, it does not model uncertainty in the degree of membership. To model such
uncertainty, you can use interval type-2 membership functions. In such type-2 membership functions,
the degree of membership can have a range of values.

For examples that use type-2 fuzzy inference systems, see “Fuzzy PID Control with Type-2 FIS” on
page 2-58 and “Predict Chaotic Time Series Using Type-2 FIS” on page 3-57.

Interval Type-2 Membership Functions
An interval type-2 membership function is defined by an upper and lower membership function. The
upper membership function (UMF) is equivalent to a traditional type-1 membership function. The
lower membership function (LMF) is less than or equal to the upper membership function for all
possible input values. The region between the UMF and LMF is the footprint of uncertainty (FOU).
The following diagram shows the UMF (red) the LMF (blue), and the FOU (shaded) for a type-2
triangular membership function.

For each input value in the universe of discourse, the degree of membership is the range of values
between the LMF and UMF values.

Type-2 Fuzzy Inference Systems
Using Fuzzy Logic Toolbox software, you can create both type-2 Mamdani and Sugeno fuzzy inference
systems.

• In type-2 Mamdani systems, both the input and output membership functions are type-2 fuzzy
sets.

• In type-2 Sugeno systems, only the input membership functions are type-2 fuzzy sets. The output
membership functions are the same as for a type-1 Sugeno system — constant or a linear function
of the input values.

To create type-2 Mamdani and Sugeno systems, use mamfistype2 and sugfistype2 objects,
respectively. These objects have the same parameters as the type-1 mamfis and sugfis objects
along with an additional TypeReductionMethod parameter.

 Type-2 Fuzzy Inference Systems

2-7



You can also create a type-2 fuzzy inference system by converting an existing type-1 system, such as
one created using the genfis function. To do so, use the convertToType2 function.

Once you create a type-2 fuzzy inference system, you can:

• Evaluate the fuzzy system using the evalfis functions
• Simulate the fuzzy system using the Fuzzy Logic Controller block
• Tune the parameters of the fuzzy system using the tunefis function
• Deploy the fuzzy system as described in “Deploy Fuzzy Inference Systems” on page 6-2

Fuzzy Inference Process for Type-2 Fuzzy Systems
Antecedent Processing

For type-2 fuzzy inference systems, input values are fuzzified by finding the corresponding degree of
membership in both the UMFs and LMFs from the rule antecedent. Doing so generates two fuzzy
values for each type-2 membership function. For example, the fuzzification in the following figure
shows the membership value in the upper membership function (fU) and the lower membership
function (fL).

Next, a range of rule firing strengths is found by applying the fuzzy operator to the fuzzified values of
the type-2 membership functions, as shown in the following figure. The maximum value of this range
(wU) is the result of applying the fuzzy operator to the fuzzy values from the UMFs. The minimum
value (wL) is the result of applying the fuzzy operator to the fuzzy values from the LMFs
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Antecedent processing is the same for both Mamdani and Sugeno systems.

Consequent Processing

For a Mamdani system, the implication method clips (min implication) or scales (prod implication)
the UMF and LMF of the output type-2 membership function using the rule firing range limits. This
process produces an output fuzzy set for each rule. The following figure shows the output fuzzy set
(dark gray region) produced by applying min implication to the UMF (red) and LMF (blue).

For a type-2 Sugeno system, the output level zi for the ith rule is computed in the same manner as for
a type-1 Sugeno system.

zi = c0
i + ∑

j = 1

M
c j

ix j

Here, j is the input index, xj is the value of the jth input variable, and the c terms are the upper
membership function parameters
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Unlike a type-1 Sugeno system, the rule firing strengths are not used to process the consequent of
each rule. Instead, the output level and rule firing strengths are used during the aggregation process.

Aggregation

The goal of the aggregation stage is to derive a single type-2 fuzzy set from the rule output fuzzy sets.

For a type-2 Mamdani system, the software finds an aggregate type-2 fuzzy set by applying the
aggregation method to the UMFs and LMFs of the output fuzzy sets of all the rules. The following
figure shows the aggregation of two type-2 fuzzy sets (the outputs for a two-rule system) using max
aggregation.

For a type-2 Sugeno system, the aggregate fuzzy set is derived using the following steps:

1 Sort the rule output levels (zi) from all the rules into ascending order. These output level values
define the universe of discourse for the aggregate type-2 fuzzy set.

2 For each output level, define the UMF value using the maximum firing range value from the
corresponding rule.

3 For each output level, define the LMF value using the minimum firing range value from the
corresponding rule.

For example, suppose you have a type-2 Sugeno system with seven rules. Further, assume these rules
have the following output levels and firing range limits.

Rule Output Level (z) Minimum Firing Value Maximum Firing
Value

1 6.3 0.1 0.5
2 4.9 0.4 0.5
3 1.6 0.3 0.5
4 5.8 0.5 0.7
5 5.4 0.2 0.6
6 0.7 0.5 0.8
7 3.2 0.2 0.7

The following figure shows the aggregated type-2 fuzzy set with its associated UMF (red) and LMF
(blue).
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Type Reduction and Defuzzification

To find the final crisp output value for the inference process, the aggregate type-2 fuzzy set is first
reduced to an interval type-1 fuzzy set, which is a range with lower limit cL and upper limit cR. This
interval type-1 fuzzy set is commonly referred to as the centroid of the type-2 fuzzy set. In theory, this
centroid is the average of the centroids of all the type-1 fuzzy sets embedded in the type-2 fuzzy set.
In practice, it is not possible to compute the exact values of cL and cR. Instead, iterative type-
reduction methods are used to estimate these values.

For a given aggregate type-2 fuzzy set, the approximate values of cL and cR are the centroids of the
following type-1 fuzzy sets (green).

Mathematically, these centroids are [1]:

cL ≈
∑i = 1

L xiμumf xi + ∑i = L + 1
N xiμlmf xi

∑i = 1
L μumf xi + ∑i = L + 1

N μlmf xi

cR ≈
∑i = 1

R xiμlmf xi + ∑i = R + 1
N xiμumf xi

∑i = 1
R μlmf xi + ∑i = R + 1

N μumf xi

Here:
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• N is the number of samples taken across the output variable range, specified using
evalfisOptions.

• xi is the ith output value sample.
• μumf is the upper membership function.
• μlmf is the lower membership function.
• L and R are switch points that are estimated by the various type-reduction methods. For a list of

supported methods, see “Type-Reduction Methods” on page 2-12.

For both Mamdani and Sugeno systems, the final defuzzified output value (y) is the average of the two
centroid values from the type reduction process.

y =
cL + cR

2

Type-Reduction Methods
Fuzzy Logic Toolbox software supports four built-in type-reduction methods. These algorithms differ
in their initialization methods, assumptions, computational efficiency, and terminating conditions.

To set the type-reduction method for a type-2 fuzzy system, set the TypeReduction property of the
mamfistype2 or sugfistype2 object.

Method TypeReduction
property Value

Description

Karnik-Mendel (KM)
[2]

"karnikmendel" First type-reduction method developed

Enhanced Karnik-
Mendel (EKM) [3]

"ekm" Modification of the Karnik-Mendel algorithm with an
improved initialization, modified termination condition,
and improved computational efficiency

Iterative algorithm
with stop condition
(IASC) [4]

"iasc" Iterative improvement to brute force methods

Enhanced iterative
algorithm with stop
condition (EIASC) [5]

"eiasc" Improved version of the IASC algorithm

In general, the computational efficiency of these methods improve as you move down the table.

You can also use your own custom type-reduction method. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-40.
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See Also
mamfistype2 | sugfistype2

More About
• “Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
• “Fuzzy PID Control with Type-2 FIS” on page 2-58
• “Predict Chaotic Time Series Using Type-2 FIS” on page 3-57
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Build Fuzzy Systems Using Fuzzy Logic Designer

Fuzzy Logic Toolbox Graphical User Interface Tools
This example shows how to build a fuzzy inference system (FIS) for the tipping example, described in
“The Basic Tipping Problem” on page 2-16, using the Fuzzy Logic Toolbox UI tools. These tools
support only type-1 fuzzy systems.

You use the following tools to build, edit, and view fuzzy inference systems:

• Fuzzy Logic Designer to handle the high-level issues for the system — How many input and
output variables? What are their names?

Fuzzy Logic Toolbox software does not limit the number of inputs. However, the number of inputs
may be limited by the available memory of your machine. If the number of inputs is too large, or
the number of membership functions is too big, then it may also be difficult to analyze the FIS
using the other tools.

• Membership Function Editor on page 2-20 to define the shapes of all the membership
functions associated with each variable

• Rule Editor on page 2-25 to edit the list of rules that defines the behavior of the system.
• Rule Viewer on page 2-27 to view the fuzzy inference diagram. Use this viewer as a diagnostic

to see, for example, which rules are active, or how individual membership function shapes
influence the results

• Surface Viewer on page 2-29 to view the dependency of one of the outputs on any one or two of
the inputs; that is, it generates and plots an output surface map for the system.

These UIs are dynamically linked, in that changes you make to the FIS using one of them, affect what
you see on any of the other open UIs. For example, if you change the names of the membership
functions in the Membership Function Editor, the changes are reflected in the rules shown in the Rule
Editor. You can use the UIs to read and write variables both to the MATLAB workspace and to a file
(the read-only viewers can still exchange plots with the workspace and save them to a file). You can
have any or all of them open for any given system or have multiple editors open for any number of
fuzzy systems.
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The following figure shows how the main components of a FIS and the three editors fit together. The
two viewers examine the behavior of the entire system.

In addition to these five primary UIs, the toolbox includes the graphical Neuro-Fuzzy Designer,
which you use to build and analyze Sugeno-type adaptive neuro-fuzzy inference systems.

The Fuzzy Logic Toolbox UIs do not support building a FIS using data. If you want to use data to build
a FIS, use one of the following techniques:

• genfis to generate a Sugeno-type FIS. Then, select File > Import in the Fuzzy Logic Designer
to import the FIS and perform fuzzy inference, as described in “The Fuzzy Logic Designer” on
page 2-16.

• Neuro-adaptive learning techniques to model the FIS, as described in “Neuro-Adaptive Learning
and ANFIS” on page 3-114.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-15



If you want to use MATLAB workspace variables, use the command-line interface instead of the Fuzzy
Logic Designer. For an example, see “Build Fuzzy Systems at the Command Line” on page 2-31.

The Basic Tipping Problem
This example creates a Mamdani fuzzy inference system using on a two-input, one-output tipping
problem based on tipping practices in the U.S. While the example creates a Mamdani FIS, the
methods used apply to creating Sugeno systems as well.

Given a number between 0 and 10 that represents the quality of service at a restaurant (where 10 is
excellent), and another number between 0 and 10 that represents the quality of the food at that
restaurant (again, 10 is excellent), what should the tip be?

The starting point is to write down the three golden rules of tipping:

1 If the service is poor or the food is rancid, then tip is cheap.
2 If the service is good, then tip is average.
3 If the service is excellent or the food is delicious, then tip is generous.

Assume that an average tip is 15%, a generous tip is 25%, and a cheap tip is 5%.

The numbers and the shape of the curve are subject to local traditions, cultural bias, and so on, but
the three rules are generally universal.

Now that you know the rules and have an idea of what the output should look like, use the UI tools to
construct a fuzzy inference system for this decision process.

The Fuzzy Logic Designer
The Fuzzy Logic Designer displays information about a fuzzy inference system. To open the Fuzzy
Logic Designer, type the following command at the MATLAB prompt:

fuzzyLogicDesigner

The Fuzzy Logic Designer opens and displays a diagram of the fuzzy inference system with the
names of each input variable on the left, and those of each output variable on the right, as shown in
the next figure. The sample membership functions shown in the boxes are just icons and do not depict
the actual shapes of the membership functions.
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Below the diagram is the name of the system and the type of inference used.

In this example, you use the default Mamdani-type inference. Another type of inference, called
Sugeno-type inference, is also available. For more information, see “Mamdani and Sugeno Fuzzy
Inference Systems” on page 2-2.

In the Fuzzy Logic Designer:

• The drop-down lists let you modify the fuzzy inference functions.
• The Current Variable area displays the name of either an input or output variable, its type, and

default range.
• A status line at the bottom displays information about the most recent operation.
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To build the fuzzy inference system described in “The Basic Tipping Problem” on page 2-16 from
scratch, type the following command at the MATLAB prompt:

fuzzyLogicDesigner

The generic untitled Fuzzy Logic Designer opens, with one input input1, and one output output1.

Tip To open the Fuzzy Logic Designer with the prebuilt fuzzy inference system stored in
tipper.fis, enter

fuzzyLogicDesigner('tipper.fis')

However, if you load the prebuilt system, you will not build rules or construct membership functions.

In this example, you construct a two-input, one output system. The two inputs are service and food.
The one output is tip.

To add a second input variable and change the variable names to reflect these designations:

1 Select Edit > Add variable > Input.

A second yellow box labeled input2 appears.
2 Click the yellow box input1. This box is highlighted with a red outline.
3 Edit the Name field from input1 to service, and press Enter.
4 Click the yellow box input2. This box is highlighted with a red outline.
5 Edit the Name field from input2 to food, and press Enter.
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6 Click the blue box output1.
7 Edit the Name field from output1 to tip, and press Enter.
8 Select File > Export > To Workspace.

9 Enter the Workspace variable name tipper, and click OK.

The diagram is updated to reflect the new names of the input and output variables. There is now
a new variable in the workspace called tipper that contains all the information about this
system. By saving to the workspace with a new name, you also rename the entire system. Your
window looks something like the following diagram.

Leave the inference options in the lower left in their default positions for now. You have entered all
the information you need for this particular UI. Next, define the membership functions associated
with each of the variables. To do this, open the Membership Function Editor.

You can open the Membership Function Editor in one of three ways:
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• Within the Fuzzy Logic Designer window, select Edit > Membership Functions.
• Within the Fuzzy Logic Designer window, double-click the blue icon called tip.
• At the command line, type mfedit.

The Membership Function Editor
The Membership Function Editor is the tool that lets you display and edit all of the membership
functions associated with all of the input and output variables for the entire fuzzy inference system.
The Membership Function Editor shares some features with the Fuzzy Logic Designer, as shown in
the next figure. In fact, all of the five basic UI tools have similar menu options, status lines, and Help
and Close buttons.
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When you open the Membership Function Editor to work on a fuzzy inference system that does not
already exist in the workspace, there are no membership functions associated with the variables that
you defined with the Fuzzy Logic Designer.

On the upper-left side of the graph area in the Membership Function Editor is a "Variable Palette"
that lets you set the membership functions for a given variable.

To set up the membership functions associated with an input or an output variable for the FIS, select
a FIS variable in this region by clicking it.

Next select the Edit pull-down menu, and choose Add MFs .. A new window appears, which allows
you to select both the membership function type and the number of membership functions associated
with the selected variable. In the lower-right corner of the window are the controls that let you
change the name, type, and parameters (shape), of the membership function, after it is selected.

The membership functions from the current variable are displayed in the main graph. These
membership functions can be manipulated in two ways. You can first use the mouse to select a
particular membership function associated with a given variable quality, (such as poor, for the
variable, service), and then drag the membership function from side to side. This action affects the
mathematical description of the quality associated with that membership function for a given
variable. The selected membership function can also be tagged for dilation or contraction by clicking
on the small square drag points on the membership function, and then dragging the function with the
mouse toward the outside, for dilation, or toward the inside, for contraction. This action changes the
parameters associated with that membership function.

Below the Variable Palette is some information about the type and name of the current variable.
There is a text field in this region that lets you change the limits of the current variable's range
(universe of discourse) and another that lets you set the limits of the current plot (which has no real
effect on the system).

The process of specifying the membership functions for the two-input tipping example, tipper, is as
follows:

1 Double-click the input variable service to open the Membership Function Editor.
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2 In the Membership Function Editor, enter [0 10] in the Range and the Display Range fields.
3 Create membership functions for the input variable service.

a Select Edit > Remove All MFs to remove the default membership functions for the input
variable service.

b Select Edit > Add MFs to open the Membership Functions dialog box.
c In the Membership Functions dialog box, select gaussmf as the MF Type.

d Verify that 3 is selected as the Number of MFs.
e Click OK to add three Gaussian curves to the input variable service.

4 Rename the membership functions for the input variable service, and specify their parameters.

a Click on the curve named mf1 to select it, and specify the following fields in the Current
Membership Function (click on MF to select) area:

• In the Name field, enter poor.
• In the Params field, enter [1.5 0].
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The two inputs of Params represent the standard deviation and center for the Gaussian
curve.

Tip To adjust the shape of the membership function, type in the desired parameters or
use the mouse, as described previously.

b Click on the curve named mf2 to select it, and specify the following fields in the Current
Membership Function (click on MF to select) area:

• In the Name field, enter good.
• In the Params field, enter [1.5 5].

c Click on the curve named mf3, and specify the following fields in the Current Membership
Function (click on MF to select) area:

• In the Name field, enter excellent.
• In the Params field, enter [1.5 10].

The Membership Function Editor window looks similar to the following figure.

5 In the FIS Variables area, click the input variable food to select it.
6 Enter [0 10] in the Range and the Display Range fields.
7 Create the membership functions for the input variable food.

a Select Edit > Remove All MFs to remove the default Membership Functions for the input
variable food.

b Select Edit > Add MFs to open the Membership Functions dialog box.
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c In the Membership Functions dialog box, select trapmf as the MF Type.
d Select 2 in the Number of MFs drop-down list.
e Click OK to add two trapezoidal curves to the input variable food.

8 Rename the membership functions for the input variable food, and specify their parameters:

a In the FIS Variables area, click the input variable food to select it.
b Click on the curve named mf1, and specify the following fields in the Current Membership

Function (click on MF to select) area:

• In the Name field, enter rancid.
• In the Params field, enter [0 0 1 3].

c Click on the curve named mf2 to select it, and enter delicious in the Name field.

Reset the associated parameters if desired.
9 Click on the output variable tip to select it.
10 Enter [0 30] in the Range and the Display Range fields to cover the output range.

The inputs ranges from 0 to 10, but the output is a tip between 5% and 25%.
11 Rename the default triangular membership functions for the output variable tip, and specify

their parameters.

a Click the curve named mf1 to select it, and specify the following fields in the Current
Membership Function (click on MF to select) area:

• In the Name field, enter cheap.
• In the Params field, enter [0 5 10].

b Click the curve named mf2 to select it, and specify the following fields in the Current
Membership Function (click on MF to select) area:

• In the Name field, enter average.
• In the Params field, enter [10 15 20].

c Click the curve named mf3 to select it, and specify the following:

• In the Name field, enter generous.
• In the Params field, enter [20 25 30].

The Membership Function Editor looks similar to the following figure.

Now that the variables have been named and the membership functions have appropriate shapes and
names, you can enter the rules. To call up the Rule Editor, go to the Edit menu and select Rules, or
type ruleedit at the command line.
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The Rule Editor

Constructing rules using the graphical Rule Editor interface is fairly self evident. Based on the
descriptions of the input and output variables defined with the Fuzzy Logic Designer, the Rule
Editor allows you to construct the rule statements automatically. You can:

• Create rules by selecting an item in each input and output variable box, selecting one Connection
item, and clicking Add Rule. You can choose none as one of the variable qualities to exclude that
variable from a given rule and choose not under any variable name to negate the associated
quality.

• Delete a rule by selecting the rule and clicking Delete Rule.
• Edit a rule by changing the selection in the variable box and clicking Change Rule.
• Specify weight to a rule by typing in a desired number between 0 and 1 in Weight. If you do not

specify the weight, it is assumed to be unity (1).

Similar to those in the Fuzzy Logic Designer and the Membership Function Editor, the Rule Editor
has the menu bar and the status line. The menu items allow you to open, close, save and edit a fuzzy
system using the five basic UI tools. From the menu, you can also:
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• Set the format for the display by selecting Options > Format.
• Set the language by selecting Options > Language.

You can access information about the Rule Editor by clicking Help and close the UI using Close.

To insert the first rule in the Rule Editor, select the following:

• poor under the variable service
• rancid under the variable food
• The or radio button, in the Connection block
• cheap, under the output variable, tip.

Then, click Add rule.

The resulting rule is
1. If (service is poor) or (food is rancid) then (tip is cheap) (1)

The numbers in the parentheses represent weights.

Follow a similar procedure to insert the second and third rules in the Rule Editor to get

1 If (service is poor) or (food is rancid) then (tip is cheap) (1)
2 If (service is good) then (tip is average) (1)
3 If (service is excellent) or (food is delicious) then (tip is generous) (1)

Tip To change a rule, first click on the rule to be changed. Next make the desired changes to that
rule, and then click Change rule. For example, to change the first rule to
1. If (service not poor) or (food not rancid) then (tip is not cheap) (1)

Select the not check box under each variable, and then click Change rule.

The Format pop-up menu from the Options menu indicates that you are looking at the verbose form
of the rules. Try changing it to symbolic. You will see
1. (service==poor) | (food==rancid) => (tip=cheap) (1)
2. (service==good) => (tip=average) (1)
3. (service==excellent) | (food==delicious) => (tip=generous) (1)

There is not much difference in the display really, but it is slightly more language neutral, because it
does not depend on terms like if and then. If you change the format to indexed, you see an extremely
compressed version of the rules.
1 1, 1 (1) : 2
2 0, 2 (1) : 1
3 2, 3 (1) : 2

This is the version of the rules that the machine deals with.

• The first column in this structure corresponds to the input variables.
• The second column corresponds to the output variable.
• The third column displays the weight applied to each rule.
• The fourth column is shorthand that indicates whether this is an OR (2) rule or an AND (1) rule.
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• The numbers in the first two columns refer to the index number of the membership function.

A literal interpretation of rule 1 is "If input 1 is MF1 (the first membership function associated with
input 1) or if input 2 is MF1, then output 1 should be MF1 (the first membership function associated
with output 1) with the weight 1."

The symbolic format does not consider the terms, if, then, and so on. The indexed format doesn't even
bother with the names of your variables. Obviously the functionality of your system doesn't depend on
how well you have named your variables and membership functions. The whole point of naming
variables descriptively is, as always, making the system easier for you to interpret. Thus, unless you
have some special purpose in mind, it is probably be easier for you to continue with the verbose
format.

At this point, the fuzzy inference system has been completely defined, in that the variables,
membership functions, and the rules necessary to calculate tips are in place. Now, look at the fuzzy
inference diagram presented at the end of the previous section and verify that everything is behaving
the way you think it should. You can use the Rule Viewer, the next of the UI tools we'll look at. From
the View menu, select Rules.

The Rule Viewer

The Rule Viewer displays a roadmap of the whole fuzzy inference process. It is based on the fuzzy
inference diagram described in the previous section. You see a single figure window with 10 plots
nested in it. The three plots across the top of the figure represent the antecedent and consequent of
the first rule. Each rule is a row of plots, and each column is a variable. The rule numbers are
displayed on the left of each row. You can click on a rule number to view the rule in the status line.
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• The first two columns of plots (the six yellow plots) show the membership functions referenced by
the antecedent, or the if-part of each rule.

• The third column of plots (the three blue plots) shows the membership functions referenced by the
consequent, or the then-part of each rule.

Notice that under food, there is a plot which is blank. This corresponds to the characterization of
none for the variable food in the second rule.

• The fourth plot in the third column of plots represents the aggregate weighted decision for the
given inference system.

This decision will depend on the input values for the system. The defuzzified output is displayed as
a bold vertical line on this plot.

The variables and their current values are displayed on top of the columns. In the lower left, there is
a text field Input in which you can enter specific input values. For the two-input system, you will
enter an input vector, [9 8], for example, and then press Enter. You can also adjust these input
values by clicking on any of the three plots for each input. This will move the red index line
horizontally, to the point where you have clicked. Alternatively, you can also click and drag this line in
order to change the input values. When you release the line, (or after manually specifying the input),
a new calculation is performed, and you can see the whole fuzzy inference process take place:

• Where the index line representing service crosses the membership function line "service is poor"
in the upper-left plot determines the degree to which rule one is activated.

• A yellow patch of color under the actual membership function curve is used to make the fuzzy
membership value visually apparent.

Each of the characterizations of each of the variables is specified with respect to the input index line
in this manner. If you follow rule 1 across the top of the diagram, you can see the consequent "tip is
cheap" has been truncated to exactly the same degree as the (composite) antecedent — this is the
implication process in action. The aggregation occurs down the third column, and the resultant
aggregate plot is shown in the single plot appearing in the lower right corner of the plot field. The
defuzzified output value is shown by the thick line passing through the aggregate fuzzy set.

You can shift the plots using left, right, down, and up. The menu items allow you to save, open, or
edit a fuzzy system using any of the five basic UI tools.

The Rule Viewer allows you to interpret the entire fuzzy inference process at once. The Rule Viewer
also shows how the shape of certain membership functions influences the overall result. Because it
plots every part of every rule, it can become unwieldy for particularly large systems, but, for a
relatively small number of inputs and outputs, it performs well (depending on how much screen space
you devote to it) with up to 30 rules and as many as 6 or 7 variables.

The Rule Viewer shows one calculation at a time and in great detail. In this sense, it presents a sort of
micro view of the fuzzy inference system. If you want to see the entire output surface of your system
— the entire span of the output set based on the entire span of the input set — you need to open up
the Surface Viewer. This viewer is the last of the five basic Fuzzy Logic Toolbox UI tools. To open the
Surface Viewer, select Surface from the View menu.
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The Surface Viewer

Upon opening the Surface Viewer, you see a three-dimensional curve that represents the mapping
from food and service quality to tip amount. Because this curve represents a two-input one-output
case, you can see the entire mapping in one plot. When we move beyond three dimensions overall, we
start to encounter trouble displaying the results.

Accordingly, the Surface Viewer is equipped with drop-down menus X (input), Y (input) and Z
(output) that let you select any two inputs and any one output for plotting. Below these menus are
two input fields X grids and Y grids that let you specify how many x-axis and y-axis grid lines you
want to include. This capability allows you to keep the calculation time reasonable for complex
problems.

By default, the surface plot updates automatically when you change the input or output variable
selections or the number of grid points. To disable automatic plot updates, in the Options menu,
clear the Always evaluate option. When this option is disabled, to update the plot, click Evaluate.

If you want to create a smoother plot, use the Plot points field to specify the number of points on
which the membership functions are evaluated in the input or output range. This field defaults to the
minimum number of plot plots, 101. If you specify fewer plot points, the field value automatically
resets to 101. When you specify the number of plot points, the surface plot automatically updates.

By clicking on the plot axes and dragging the mouse, you can manipulate the surface so that you can
view it from different angles.

The Ref. Input field is used in situations when there are more inputs required by the system than the
surface is mapping. You can edit this field to explicitly set inputs not specified in the surface plot.
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Suppose you have a four-input one-output system and would like to see the output surface. The
Surface Viewer can generate a three-dimensional output surface where any two of the inputs vary,
but two of the inputs must be held constant because computer monitors cannot display a five-
dimensional shape. In such a case, the input is a four-dimensional vector with NaNs holding the place
of the varying inputs while numerical values indicates those values that remain fixed.

The menu items allow you to open, close, save and edit a fuzzy system using the five basic UI tools.
You can access information about the Surface Viewer by clicking Help and close the UI using Close.

Importing and Exporting Fuzzy Inference Systems
When you save a fuzzy system to a file, you are saving an ASCII text FIS file representation of that
system with the file suffix .fis. Do not manually edit the contents of a .fis file. Doing so can
produce unexpected results when loading the file. When you save your fuzzy system to the MATLAB
workspace, you are creating a variable that acts as a MATLAB object for the fuzzy system.

Note If you do not save your FIS to a file, but only save it to the MATLAB workspace, you cannot
recover it for use in a new MATLAB session.

See Also
Fuzzy Logic Designer

More About
• “Build Fuzzy Systems at the Command Line” on page 2-31
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
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Build Fuzzy Systems at the Command Line
You can construct a fuzzy inference system (FIS) at the MATLAB® command line. This method is an
alternative to interactively designing your FIS using Fuzzy Logic Designer.

This example shows you how to create a Mamdani fuzzy inference system. While you create a
Mamdani FIS, the methods used apply to creating Sugeno systems as well.

Tipping Problem at the Command Line

To demonstrate the command-line functionality for creating and viewing fuzzy inference systems, this
example uses the tipper FIS.

fis = readfis('tipper.fis');

This command returns a mamfis object that contains the properties of the fuzzy system. For a
Sugeno system, this command returns a sugfis object.

You can access the FIS properties using dot notation. For example, view the inputs of the fuzzy
system.

fis.Inputs

ans = 
  1x2 fisvar array with properties:

    Name
    Range
    MembershipFunctions

  Details:
           Name        Range     MembershipFunctions
         _________    _______    ___________________

    1    "service"    0    10        {1x3 fismf}    
    2    "food"       0    10        {1x2 fismf}    

To set the properties of your fuzzy system, use dot notation. For example, set the name of the FIS.

fis.Name = "gratuity";

FIS Object

You represent fuzzy inference systems using mamfis and sugfis objects. These objects contain all
the fuzzy inference system information, including the variable names, membership function
definitions, and fuzzy inference methods. Each FIS is itself a hierarchy of objects. The following
objects are used within a fuzzy system:

• fisvar objects represent both input and output variables.
• fismf objects represent membership functions within each input and output variable.
• fisrule objects represent fuzzy rules that map inputs to outputs.

View all the information for a FIS by directly listing its properties.

fis
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fis = 
  mamfis with properties:

                       Name: "gratuity"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

You can view the properties of the objects within a FIS object using dot notation. For example, view
the fisvar object for first input variable.

fis.Inputs(1)

ans = 
  fisvar with properties:

                   Name: "service"
                  Range: [0 10]
    MembershipFunctions: [1x3 fismf]

Also, view the membership functions for this variable.

fis.Inputs(1).MembershipFunctions

ans = 
  1x3 fismf array with properties:

    Type
    Parameters
    Name

  Details:
            Name          Type       Parameters
         ___________    _________    __________

    1    "poor"         "gaussmf"    1.5      0
    2    "good"         "gaussmf"    1.5      5
    3    "excellent"    "gaussmf"    1.5     10

System Display Functions

To get a high-level view of your fuzzy system from the command line, use the plotfis, plotmf, and
gensurf functions. plotfis displays the whole system as a block diagram, as shown in the Fuzzy
Logic Designer.

plotfis(fis)
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The plotmf function plots all the membership functions associated with a given variable. For
example, view the membership functions for the first input variable.

plotmf(fis,'input',1)
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Similarly, to view the membership functions for the first output, type:

plotmf(fis,'output',1)
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plotmf does not support viewing the output membership functions for Sugeno systems.

To view the rules of the fuzzy system, type:

fis.Rules

ans = 
  1x3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                                Description                        
         __________________________________________________________

    1    "service==poor | food==rancid => tip=cheap (1)"           
    2    "service==good => tip=average (1)"                        
    3    "service==excellent | food==delicious => tip=generous (1)"

The gensurf function plots the output of the FIS for any one or two input variables.

gensurf(fis)
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Build Fuzzy Inference System

As an alternative to using the Fuzzy Logic Designer app, you can construct a FIS entirely from the
command line.

First, create a Mamdani FIS, specifying its name.

fis = mamfis('Name',"tipper");

Add the first input variable for the service quality using addInput.

fis = addInput(fis,[0 10],'Name',"service");

Add membership functions for each of the service quality levels using addMF. In this case, use
Gaussian membership functions. For more information on Gaussian membership function properties,
see gaussmf.

fis = addMF(fis,"service","gaussmf",[1.5 0],'Name',"poor");
fis = addMF(fis,"service","gaussmf",[1.5 5],'Name',"good");
fis = addMF(fis,"service","gaussmf",[1.5 10],'Name',"excellent");

Add the second input variable for the food quality, and add two trapezoidal membership functions.
For information on trapezoidal membership functions, see trapmf.

fis = addInput(fis,[0 10],'Name',"food");
fis = addMF(fis,"food","trapmf",[-2 0 1 3],'Name',"rancid");
fis = addMF(fis,"food","trapmf",[7 9 10 12],'Name',"delicious");
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Add the output variable for the tip, and add three triangular membership functions. For more
information on the triangular membership function, see trimf.

fis = addOutput(fis,[0 30],'Name',"tip");
fis = addMF(fis,"tip","trimf",[0 5 10],'Name',"cheap");
fis = addMF(fis,"tip","trimf",[10 15 20],'Name',"average");
fis = addMF(fis,"tip","trimf",[20 25 30],'Name',"generous");

Specify the following three rules for the FIS as a numeric array:

1 If (service is poor) or (food is rancid), then (tip is cheap).
2 If (service is good), then (tip is average).
3 If (service is excellent) or (food is delicious), then (tip is generous).

Each row of the array contains one rule in the following format.

• Column 1 - Index of membership function for first input
• Column 2 - Index of membership function for second input
• Column 3 - Index of membership function for output
• Column 4 - Rule weight (from 0 to 1)
• Column 5 - Fuzzy operator (1 for AND, 2 for OR)

For the membership function indices, indicate a NOT condition using a negative value. For more
information on fuzzy rule specification, see addRule.

ruleList = [1 1 1 1 2;
            2 0 2 1 1;
            3 2 3 1 2];

Add the rules to the FIS.

fis = addRule(fis,ruleList);

Alternatively, you can create the fuzzy inference system using a combination of dot notation and
fisvar, fismf, and fisrule objects. This method is not a good practice for most applications.
However, you can use this approach when your application requires greater flexibility in constructing
and modifying your FIS.

Create the fuzzy inference system.

fis = mamfis('Name','tipper');

Add and configure the first input variable. In this case, create a default fisvar object and specify its
properties using dot notation.

fis.Inputs(1) = fisvar;
fis.Inputs(1).Name = "service";
fis.Inputs(1).Range = [0 10];

Define the membership functions for the first input variable. For each MF, create a fismf object, and
set the properties using dot notation.

fis.Inputs(1).MembershipFunctions(1) = fismf;
fis.Inputs(1).MembershipFunctions(1).Name = "poor";
fis.Inputs(1).MembershipFunctions(1).Type = "gaussmf";
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fis.Inputs(1).MembershipFunctions(1).Parameters = [1.5 0];
fis.Inputs(1).MembershipFunctions(2) = fismf;
fis.Inputs(1).MembershipFunctions(2).Name = "good";
fis.Inputs(1).MembershipFunctions(2).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(2).Parameters = [1.5 5];
fis.Inputs(1).MembershipFunctions(3) = fismf;
fis.Inputs(1).MembershipFunctions(3).Name = "excellent";
fis.Inputs(1).MembershipFunctions(3).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(3).Parameters = [1.5 10];

Add and configure the second input variable. For this variable, specify the name and range when you
create the fisvar object.

fis.Inputs(2) = fisvar([0 10],'Name',"food");

Specify the membership functions for the second input. For each MF, specify the name, type, and
parameters when you create the fismf object.

fis.Inputs(2).MembershipFunctions(1) = fismf("trapmf",[-2 0 1 3],...
                                             'Name',"rancid");
fis.Inputs(2).MembershipFunctions(2) = fismf("trapmf",[7 9 10 12],...
                                             'Name',"delicious");

Similarly, add and configure the output variable and its membership functions.

fis.Outputs(1) = fisvar([0 30],'Name',"tip");

In this case, specify the output membership functions using a vector of fismf objects.

mf1 = fismf("trimf",[0 5 10],'Name',"cheap");
mf2 = fismf("trimf",[10 15 20],'Name',"average");
mf3 = fismf("trimf",[20 25 30],'Name',"generous");
fis.Outputs(1).MembershipFunctions = [mf1 mf2 mf3];

Create the rules for the fuzzy system. For each rule create a fisrule object. Then, specify the rules
using a vector of these objects. When creating a fisrule object using numeric values, you must
specify the number of inputs variables.

rule1 = fisrule([1 1 1 1 2],2);
rule2 = fisrule([2 0 2 1 1],2);
rule3 = fisrule([3 2 3 1 2],2);
rules = [rule1 rule2 rule3];

Before adding your rules to your fuzzy system, you must update them using the data in the FIS
object. Update the rules using the update function, and add them the fuzzy system.

rules = update(rules,fis);
fis.Rules = rules;

When constructing your fuzzy system, you can also specify custom membership functions and
inference functions. For more information, see “Build Fuzzy Systems Using Custom Functions” on
page 2-40.

Evaluate Fuzzy Inference System

To evaluate the output of a fuzzy system for a given input combination, use the evalfis command.
For example, evaluate fis using input variable values of 1 and 2.
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evalfis(fis,[1 2])

ans = 5.5586

You can also evaluate multiple input combinations using an array where each row represents one
input combination.

inputs = [3 5;
          2 7;
          3 1];
evalfis(fis,inputs)

ans = 3×1

   12.2184
    7.7885
    8.9547

See Also
evalfis | gensurf | mamfis | plotfis | plotmf | sugfis

More About
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
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Build Fuzzy Systems Using Custom Functions

Build Fuzzy Inference Systems Using Custom Functions in Fuzzy Logic
Designer
When you build a fuzzy inference system, as described in “Fuzzy Inference Process” on page 1-21,
you can replace the built-in membership functions, inference functions, or both with custom
functions. In this section, you learn how to build a fuzzy inference system using custom functions in
the Fuzzy Logic Designer app.

To build a fuzzy inference system using custom functions in the Fuzzy Logic Designer app:

1 Open Fuzzy Logic Designer. At the MATLAB command line, type:

fuzzyLogicDesigner
2 Specify the number of inputs and outputs of the fuzzy system, as described in “The Fuzzy Logic

Designer” on page 2-16.
3 Create custom membership functions, and replace the built-in membership functions with them,

as described in “Specify Custom Membership Functions” on page 2-41.

Membership functions define how each point in the input space is mapped to a membership value
between 0 and 1.

4 Create rules using the Rule Editor, as described in “The Rule Editor” on page 2-25.

Rules define the logical relationship between the inputs and the outputs.
5 Create custom inference functions, and replace the built-in inference functions with them, as

described in “Specify Custom Inference Functions” on page 2-45.

Inference methods include the AND, OR, implication, aggregation, and defuzzification methods.
This action generates the output values for the fuzzy system.

The next figure shows the tipping problem example where the built-in Implication,
Aggregation and Defuzzification functions are replaced with the custom functions,
customimp, customagg, and customdefuzz, respectively.
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6 Select View > Surface to view the output of the fuzzy inference system in the Surface Viewer, as
described in “The Surface Viewer” on page 2-29.

Specify Custom Membership Functions
You can create custom membership functions and use them in the fuzzy inference process. The values
of these functions must lie between 0 and 1. For more information on the properties of membership
functions, see “Membership Functions” on page 1-11.

To create a custom membership function, and replace the built-in membership function:

1 Create a MATLAB function, and save it in your current working folder.

To learn how to create MATLAB functions, see “Scripts vs. Functions” (MATLAB).

The following code is an example of a multistep custom membership function, custmf1, that
depends on eight parameters between 0 and 10.

% Function to generate a multi-step custom membership function
% using 8 parameters for the input argument x
function out = custmf1(x,params)

for i = 1:length(x)
    if x(i) < params(1)
        y(i) = params(1);
    elseif x(i) < params(2)
        y(i) = params(2);
    elseif x(i) < params(3)
        y(i) = params(3);

 Build Fuzzy Systems Using Custom Functions

2-41



    elseif x(i) < params(4)
        y(i) = params(4);
    elseif x(i) < params(5)
        y(i) = params(5);
    elseif x(i) < params(6)
        y(i) = params(6);
    elseif x(i) < params(7)
        y(i) = params(7);
    elseif x(i) < params(8)
        y(i) = params(8);
    else
        y(i) = 0;
    end
end

out = 0.1*y'; % Scale the output to lie between 0 and 1.

end
2 Open the Fuzzy Logic Designer app.

fuzzyLogicDesigner

The Fuzzy Logic Designer opens with the default FIS name, Untitled, and contains one input,
input1, and one output, output1.

3 In the Fuzzy Logic Designer, select Edit > Membership Functions to open the Membership
Function Editor.

Three triangular-shaped membership functions for input1 are displayed by default.
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4 To replace the default membership function with a custom function in the Membership Function
Editor:

a Select Edit > Remove All MFs to remove the default membership functions for input1.
b Select Edit > Add Custom MF to open the Custom Membership Function dialog box.

5 To specify a custom function, in the Custom Membership Function dialog box:

a In the MF name field, specify a name for the custom membership function.

Note When adding additional custom membership functions, specify a different MF name
for each function.

b In the M-file function name field, specify the name of the custom membership function file.
c In the Parameter list, specify a vector of parameters.

These values determine the shape and position of the membership function, and the function
is evaluated using these parameter values.

Note The length of the parameter vector must be greater than or equal to the number of
parameters in the custom membership function.

Using the custmf1 example in step 1, the Custom Membership Function dialog box looks
similar to the following figure.

d Click OK to add the custom membership function.
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e Specify both the Range and Display Range to be [0 10] to match the range of the custom
membership function.

The Membership Function Editor displays the custom membership function plot.

This action also adds the custom membership function to the Rule Viewer, and makes it available
for creating rules for the fuzzy inference process. To view the custom function in the Rule Viewer,
select Edit > Rules in either the Fuzzy Logic Designer or the Membership Function Editor.
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6 To add custom membership functions for output1, select it in the Membership Function Editor,
and repeat steps 4 and 5.

You can also add a custom membership function to a FIS at the MATLAB command line. For example,
to add custmf1 to the first input variable, input1 of the FIS, myFIS, and name it customMF1, type
the following:
myFIS = addMF(myFIS,"input1","custmf1",[0 1 2 4 6 8 9 10],'Name',"customMF1");

Specify Custom Inference Functions
You can replace the built-in AND, OR, implication, aggregation, and defuzzification inference methods
with custom functions. After you create the custom inference function, save it in your current
working folder. To learn how to build fuzzy systems using custom inference functions, see the “Build
Fuzzy Inference Systems Using Custom Functions in Fuzzy Logic Designer” on page 2-40 section.

The guidelines for creating and specifying the functions for building fuzzy inference systems are
described in the following sections.

• “Create Custom AND and OR Functions” on page 2-46
• “Create Custom Implication Functions” on page 2-46
• “Create Custom Aggregation Functions” on page 2-47
• “Create Custom Defuzzification Functions” on page 2-48
• “Steps for Specifying Custom Inference Functions” on page 2-48
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Create Custom AND and OR Functions

The custom AND and OR inference functions must operate column-wise on a matrix, in the same way
as the MATLAB functions max, min, or prod.

For a row or column vector x, min(x) returns the minimum element.

x = [1 2 3 4];
min(x)

ans =
     1

For a matrix x, min(x) returns a row vector containing the minimum element from each column.

x = [1 2 3 4;5 6 7 8;9 10 11 12];
min(x)

ans =
     1     2     3     4

For N-D arrays, min(x) operates along the first non-singleton dimension.

The function min(x,y) returns an array that is same size as x and y with the minimum elements
from x or y. Either of the input arguments can be a scalar. Functions such as max, and prod operate
in a similar manner.

In the toolbox, the AND implication methods perform an element by element matrix operation, similar
to the MATLAB function min(x,y).

a = [1 2; 3 4];
b = [2 2; 2 2];
min(a,b)

ans = 
    1     2
    2     2

The OR implication methods perform an element by element matrix operation, similar to the MATLAB
function max(x,y).

Create Custom Implication Functions

Custom implication functions must operate in the same way as the MATLAB functions max, min, or
prod. Your custom implication function must be a T-norm fuzzy intersection operation. For more
information, see “Additional Fuzzy Operators” on page 1-16.

An implication function must support either one or two inputs because the software calls the function
in two ways:

• To calculate the output fuzzy set values using the firing strength of all the rules and the
corresponding output membership functions. In this case, the software calls the implication
function using two inputs, similar to the following example:

impvals = customimp(w,outputmf)

• w — Firing strength of multiple rules, specified as an nr-by-ns matrix. Here, nr is the number of
rules and ns is the number of samples of the output membership functions.
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w(:,j) = w(:,1) for all j. w(i,1) is the firing strength of the ith rule.
• outputmf — Output membership function values, specified as an nr-by-ns matrix. Here, nr is

the number of rules and ns is the number of samples of the output membership functions.

outputmf(i,:) contains the data of the ith output membership function.
• To calculate the output fuzzy value using the firing strength of a single rule and the corresponding

output membership function, for a given sample. In this case, the software calls the implication
function using one input, similar to the following example:

impval = customimp([w outputmf])

w and outputmf are scalar values representing the firing strength of a rule and the corresponding
output membership function value, for a given sample.

The following is an example of a bounded product custom implication function with binary mapping
T a, b = max 0, a + b− 1 . [1]

function y = customimp(x1,x2)

if nargin == 1
    % x1 assumed to be non-empty column vector or matrix.    
    minVal = zeros(1,size(x1,2));
    y = ones(1,size(x1,2));    
 
    for i = 1:size(x1,1)
        y = max(minVal,sum([y;x1(i,:)])-1);
    end
else    
    % x1 and x2 assumed to be non-empty matrices.                  
    minVal = zeros(1,size(x1,2));
    y = zeros(size(x1));
  
    for i = 1:size(x1,1)
        y(i,:) = max(minVal,sum([x1(i,:);x2(i,:)])-1);
    end    
end

end

Note Custom implication functions are not supported for Sugeno-type systems.

Create Custom Aggregation Functions

The custom aggregation functions must operate in the same way as the MATLAB functions max, min,
or prod and must be of the form y = customagg(x). Your custom implication function must be a T-
conorm (S-norm) fuzzy intersection operation. For more information, see “Additional Fuzzy
Operators” on page 1-16.

x is an nv-by-nr matrix, which is the list of truncated output functions returned by the implication
method for each rule. nv is the number of output variables, and nr is the number of rules. The output
of the aggregation method is one fuzzy set for each output variable.

The following is an example of a bounded sum custom aggregation function with binary mapping
S a, b = min a + b, 1 . [1]
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function y = customagg(x)

maxVal = ones(1,size(x,2));
y = zeros(1,size(x,2));

for i = 1:size(x,1)
    y = min(maxVal,sum([y;x(i,:)]));
end

end

Note Custom aggregation functions are not supported for Sugeno-type systems.

Create Custom Defuzzification Functions

The custom defuzzification functions must be of the form y = customdefuzz(x,ymf), where x is
the vector of values in the membership function input range, and ymf contains the values of the
membership function for each x value.

The following is an example of a custom defuzzification function:

function defuzzfun = customdefuzz(x,ymf)

total_area = sum(ymf);
defuzzfun = sum(ymf.*x)/total_area;

end

Note Custom defuzzification functions are not supported for Sugeno-type systems.

Steps for Specifying Custom Inference Functions

After you create and save a custom inference function, specify the function in the fuzzy inference
system using the following steps:

1 In the lower-left panel of the Fuzzy Logic Designer, select Custom from the drop-down menu
corresponding to the inference method for which you want to specify the custom function.
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Doing so opens a dialog box where you specify the name of the custom inference function.
2 In the Method name field, specify the name of the custom inference function, and click OK.

The custom function replaces the built-in function when building the fuzzy inference system.

Note In order to specify a custom inference function, you must first add at least one rule to your
FIS.

3 To specify custom functions for other inference methods, repeat steps 1 and 2.

You can also specify custom inference functions for a FIS (myFIS) at the MATLAB command line. For
example, to add a custom:

• Defuzzification method, type

myFIS.DefuzzificationMethod = "customdefuzz";

where customdefuzz is the name of the custom defuzzification function.
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• Implication method, type

myFIS.ImplicationMethod = "customimp";

where customimp is the name of the custom implication function.
• Aggregation method, type

myFIS.AggregationMethod = "customagg";

where customagg is the name of the custom aggregation function.

Specify Custom Type-Reduction Functions
For type-2 fuzzy inference systems, you can specify a custom type-reduction function. This function
must be of the form y = customtr(x,umf,lmf), where x is the vector of values in the membership
function input range. umf and lmf are the respective values of the upper and lower membership
function for each x value. The output y is a two-element row vector of centroids [cL,cR].

For more information on type reduction, see “Type-2 Fuzzy Inference Systems” on page 2-7.

By default, type-2 Sugeno systems support only a weighted average form of type reduction. The
following custom type-reduction function implements a weighted sum form of type reduction for a
Sugeno system.

function y = customtr(x,umf,ymf)

y = zeros(1,2);

y(1) = sum(x.*umf);
y(2) = sum(x.*lmf);

end

To specify the custom type-reduction function for a FIS (myFIS) at the MATLAB command line, type

myFIS.DTypeReductionMethod = "customtr";

where customtr is the name of the custom defuzzification function.

Use Custom Functions in Code Generation
You can use custom functions in fuzzy inference systems for which you generate code. For more
information on code generation for fuzzy systems, see “Deploy Fuzzy Inference Systems” on page 6-
2.

If you use a nondouble data type for your generated code, you must propagate the data type from the
input arguments of your custom function to the output argument. For example, the following custom
aggregation function maintains the data type of x in y using the ones and zeros with the 'like'
argument.

function y = customagg(x)

maxVal = ones(1,size(x,2),'like',x);
y = zeros(1,size(x,2),'like',x);
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for i = 1:size(x,1)
    y = min(maxVal,sum([y;x(i,:)]));
end

end

For more information on writing functions that support C/C++ code generation, see “MATLAB
Programming for Code Generation” (MATLAB Coder).

References
[1] Mizumoto, M. "Pictorial Representations of Fuzzy Connectives, Part II: Cases of Compensatory

Operators and Self-Dual Operators." Fuzzy Sets and Systems. Vol. 32, Number 1., 1989, pp.
45-79.

See Also
Fuzzy Logic Designer

Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
• “Build Fuzzy Systems at the Command Line” on page 2-31

 Build Fuzzy Systems Using Custom Functions

2-51



Fuzzy Trees
As the number of inputs to a fuzzy system increases, the number of rules increases exponentially. This
large rule base reduces the computational efficiency of the fuzzy system. It also makes the operation
of the fuzzy system harder to understand, and it makes the tuning of rule and membership function
parameters more difficult. Because many applications have a limited amounts of training data, a large
rule base reduces the generalizability of tuned fuzzy systems.

To overcome this issue, you can implement a fuzzy inference system (FIS) as a tree of smaller
interconnected FIS objects rather than as a single monolithic FIS object. These fuzzy trees are also
known as hierarchical fuzzy systems because the fuzzy systems are arranged in hierarchical tree
structures. In a tree structure, the outputs of the low-level fuzzy systems are used as inputs to the
high-level fuzzy systems. A fuzzy tree is more computationally efficient and easier to understand than
a single FIS with the same number of inputs.

Types of Hierarchical Structures
There are several fuzzy tree structures that you can use for your application. The following figure
shows commonly used fuzzy tree structures: an incremental, aggregated, or cascaded structure.

Incremental Structure

In an incremental structure, input values are incorporated in multiple stages to refine the output
values in several levels. For example, the previous figure shows a three-level incremental fuzzy tree
having fuzzy inference systems FISi

n, where i indicates the index of a FIS in the nth level. In an
incremental fuzzy tree, i = 1, meaning that each level has only one fuzzy inference system. In the
previous figure, the jth input of the ith FIS in the nth level is shown as input xi jn, whereas the kth
output of the ith FIS in the nth level is shown as input xikn. In the figure, n = 3, j = 1 or 2, and k = 1.
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If each input has m membership functions (MFs), each FIS has a complete set of m2 rules. Hence, the
total number of rules is nm2 = 3 ⨉ 32 = 27.

The following figure shows a monolithic (n = 1) FIS with four inputs (j=1, 2, 3, 4) and three MFs (m =
3).

In the FIS of this figure, the total number of rules is nm4 = 1 ⨉ 34 = 81. Hence, the total number of
rules in an incremental fuzzy tree is linear with the number of input pairs.

Input selection at different levels in an incremental fuzzy tree uses input rankings based on their
contributions to the final output values. The input values that contribute the most are generally used
at the lowest level, while the least influential ones are used at the highest level. In other words, low-
rank input values are dependent on high-rank input values.

In an incremental fuzzy tree, each input value usually contributes to the inference process to a
certain extent, without being significantly correlated with the other inputs. For example, a fuzzy
system forecasts the possibility of buying an automobile using four inputs: color, number of doors,
horse power, and autopilot. The inputs are four distinct automobile features, which can independently
influence a buyer’s decision. Hence, the inputs can be ranked using the existing data to construct a
fuzzy tree, as shown in the following figure.

For an example that illustrates creating an incremental fuzzy tree in MATLAB, see the example
Create Incremental FIS Tree on the fistree reference page.

Aggregated Structure

In an aggregated structure, input values are incorporated as groups at the lowest level, where each
input group is fed into a FIS. The outputs of the lower level fuzzy systems are combined (aggregated)
using the higher level fuzzy systems. For example, the following shows a two-level aggregated fuzzy
tree having fuzzy inference systems FISin

n , where in indicates the index of a FIS in the nth level.
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In this aggregated fuzzy tree, i1 = 1,2 and i2 = 1. Hence, each level includes a different number of
FIS. The jth input of the inth FIS is shown in the figure as input xin j, and the kth output of the inth FIS
is shown as output yink. In the figure, j = 1,2 and k = 1. In other words, each FIS has two inputs and
one output. If each input has m MFs, then each FIS has a complete set of m2 rules. Hence, the total
number of rules for the three fuzzy systems is 3 m2 = 3 ⨉ 32 = 27, which is the same as an
incremental FIS for a similar configuration.

In an aggregated fuzzy tree, input values are naturally grouped together for specific decision-making.
For example, an autonomous robot navigation task combines obstacle avoidance and target reaching
subtasks for collision-free navigation. To achieve the navigation task, the fuzzy tree can use four
inputs: distance to the closest obstacle, angle of the closest obstacle, distance to the target, and angle
of the target. Distances and angles are measured with respect to the current position and heading
direction of the robot. In this case, at the lowest level, the inputs naturally group as shown in the
following figure: obstacle distance and obstacle angle (group 1) and target distance and target angle
(group 2). Two fuzzy systems separately process individual group inputs and then another fuzzy
system combines their outputs to produce a collision-free heading for the robot.

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the example Create
Aggregated FIS Tree on the fistree reference page.

Variation on Aggregated Structure

In a variation of the aggregated structure known as parallel structure [1], the outputs of the lowest-
level fuzzy systems are directly summed to generate the final output value. The following figure
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shows an example of a parallel fuzzy tree, where outputs of fis1 and fis2 are summed to produce the
final output.

The fistree object does not provide the summing node Σ. Therefore, you must add a custom
aggregation method to evaluate a parallel fuzzy tree. For an example, see "Create and Evaluate
Parallel FIS Tree" on the fistree reference page.

Cascaded or Combined Structure

A cascaded structure, also known as combined structure, combines both incremental and aggregated
structures to construct a fuzzy tree. This structure is suitable for a system that includes both
correlated and uncorrelated inputs. The tree groups the correlated inputs in an aggregated structure,
and adds uncorrelated inputs in an incremental structure. The following figure shows an example of a
cascaded tree structure, where the first four inputs are grouped pairwise in an aggregated structure
and the fifth input is added in an incremental structure.
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For example, consider the robot navigation task discussed in “Aggregated Structure” on page 2-53.
Suppose that task includes another input, the previous heading of the robot, taken into account to
prevent large changes in the robot heading. You can add this input using the incremental structure of
the following diagram.

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the example
"Create Cascaded FIS Tree" on the fistree reference page.

Add or Remove FIS Tree Outputs
When you evaluate a fistree object, it returns results for only the open outputs, which are not
connected to any FIS inputs in the fuzzy tree. You can optionally access other outputs in the tree. For
instance, in the following diagram of an aggregated fuzzy tree, you might want to obtain the output of
fis2 when you evaluate the tree.

You can add such outputs to a fistree object. You can also remove outputs, provided that the fuzzy
tree always has at least one output. For an example, see "Update FIS Tree Outputs" on the fistree
reference page.

Use the Same Value for Multiple inputs of FIS Tree
A fistree object allows using the same value for multiple inputs. For instance, in the following
figure, input2 of fis1 and input 1 of fis2 use the same value during evaluation.
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For an example showing how to construct a FIS tree in this way, see the example "Use Same Value for
Multiple Inputs of a FIS Tree" on the fistree reference page.

Update Fuzzy Inference Systems in FIS Tree
You can add or remove individual FIS elements from a fistree object. When you do so, the software
automatically updates the Connections, Inputs, and Outputs properties of the fistree object.
For an example, see "Update Fuzzy Inference Systems in a FIS Tree" in the fistree reference page.

Tune a Fuzzy Tree
Once you have configured the internal connections in your fuzzy tree, the next step is to tune the
parameters of the tree. For an example, see “Tune FIS Tree for Gas Mileage Prediction” on page 3-
37.

References
[1] Siddique, N., and H. Adeli. Computational Intelligence: Synergies of Fuzzy Logic, Neural

Networks and Evolutionary Computing. Hoboken, NJ: Wiley, 2013.

See Also
fistree

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-37
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Fuzzy PID Control with Type-2 FIS
This example compares a type-2 fuzzy PID controller with both a type-1 fuzzy PID controller and
conventional PID controller. This example is adapted from [1].

Fuzzy PID Control

This example uses the following fuzzy logic controller (FLC) structure as described in [1]. The output
of the controller (u) is found using the error (e) and the derivative of the error (ė). Using scaling
factors Ce and Cd, inputs e and ė are normalized to E and ΔE, respectively. The normalized ranges for
both inputs are in the range [-1,1]. The fuzzy logic controller also produces a normalized output in the
range [-1,1]. Additional scaling factors C0 and C1 map the fuzzy logic controller output U into u.

This example uses a delayed first-order system G s  as the plant model.

G s = Ce−Ls

Ts + 1

Here, C, L, and T are the gain, time delay, and time constant, respectively.

The scaling factors Cd, C0, and C1 are defined as follows, where τc is the closed-loop time constant.

Cd = min T, L
2 × Ce

C0 = 1
C × Ce τc + L

2

C1 = max T, L
2 × C0

The input scaling factorCe is:

Ce ≡
1

r tr − y tr

where r tr  and y tr  are the reference and system output values at time t = tr. These values
correspond to the nominal operating point of the system.

This example compares the performance of type-1 and type-2 Sugeno fuzzy inference systems (FISs)
using the Fuzzy Logic Controller Simulink® block.

2 Fuzzy Inference System Modeling

2-58



Construct Type-1 FIS

Create a type-1 FIS using sugfis.

fis1 = sugfis;

Add input variables to the FIS.

fis1 = addInput(fis1,[-1 1],'Name','E');
fis1 = addInput(fis1,[-1 1],'Name','delE');

Add three uniformly distributed overlapping triangular membership functions (MFs) to each input.
The MF names stand for negative (N), zero (Z), and positive (P).

fis1 = addMF(fis1,'E','trimf',[-2 -1 0],'Name','N');
fis1 = addMF(fis1,'E','trimf',[-1 0 1],'Name','Z');
fis1 = addMF(fis1,'E','trimf',[0 1 2],'Name','P');
fis1 = addMF(fis1,'delE','trimf',[-2 -1 0],'Name','N');
fis1 = addMF(fis1,'delE','trimf',[-1 0 1],'Name','Z');
fis1 = addMF(fis1,'delE','trimf',[0 1 2],'Name','P');

Plot the input membership functions.

figure
subplot(1,2,1)
plotmf(fis1,'input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis1,'input',2)
title('Input 2')
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Add the output variable to the FIS.

fis1 = addOutput(fis1,[-1 1],'Name','U');

Add uniformly distributed constant functions to the output. The MF names stand for negative big
(NB), negative medium (NM), zero (Z), positive medium (PM), and positive big (PB).

fis1 = addMF(fis1,'U','constant',-1,'Name','NB');
fis1 = addMF(fis1,'U','constant',-0.5,'Name','NM');
fis1 = addMF(fis1,'U','constant',0,'Name','Z');
fis1 = addMF(fis1,'U','constant',0.5,'Name','PM');
fis1 = addMF(fis1,'U','constant',1,'Name','PB');

Add rules to the FIS. These rules create a proportional control surface.

rules = [...
    "E==N & delE==N => U=NB"; ...
    "E==Z & delE==N => U=NM"; ...
    "E==P & delE==N => U=Z"; ...
    "E==N & delE==Z => U=NM"; ...
    "E==Z & delE==Z => U=Z"; ...
    "E==P & delE==Z => U=PM"; ...
    "E==N & delE==P => U=Z"; ...
    "E==Z & delE==P => U=PM"; ...
    "E==P & delE==P => U=PB" ...
    ];
fis1 = addRule(fis1,rules);
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Plot the control surface.

figure
gensurf(fis1)
title('Control surface of type-1 FIS')

Construct Type-2 FIS

Convert the type-1 FIS, fis1, to a type-2 FIS.

fis2 = convertToType2(fis1);

The type-2 Sugeno system, fis2, uses type-2 membership functions for the input variables and
type-1 membership functions for the output variables.

Define the footprint of uncertainty (FOU) for the input MFs as defined in [1]. To do so, set the lower
MF scaling factor for each MF. For this example, set the lower MF lag values to 0.

scale = [0.2 0.9 0.2;0.3 0.9 0.3];
for i = 1:length(fis2.Inputs)
    for j = 1:length(fis2.Inputs(i).MembershipFunctions)
        fis2.Inputs(i).MembershipFunctions(j).LowerLag = 0;
        fis2.Inputs(i).MembershipFunctions(j).LowerScale = scale(i,j);
    end
end

Plot the type-2 input membership functions.
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figure
subplot(1,2,1)
plotmf(fis2,'input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis2,'input',2)
title('Input 2')

The FOU adds additional uncertainty to the FIS and produces a nonlinear control surface.

figure
gensurf(fis2)
title('Control surface of type-2 FIS')
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Conventional PID Controller

This example compares the fuzzy logic controller performance with that of the following conventional
PID controller.

PID s = Kp +
Ki
s +

Kds
τfs + 1

Here, Kp is proportional gain, Ki is integrator gain, Kd is derivative gain, and τf  is the derivative filter
time constant.

Configure Simulation

Define the nominal plant model.

C = 0.5;
L = 0.5;
T = 0.5;
G = tf(C,[T 1],'Outputdelay',L);

Generate the conventional PID controller parameters using pidtune.

pidController = pidtune(G,'pidf');

In this example, the reference (r  is a step signal and tr = 0, which results in Ce = 1 as follows.

Ce = 1
r tr − y tr

= 1
1− 0=1.
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Ce = 1;

To configure the simulation, use the following nominal controller parameters.

tauC = 0.2;

Cd = min(T,L/2)*Ce;
C0 = 1/(C*Ce*(tauC+L/2));
C1 = max(T,L/2)*C0;

To simulate the controllers, use the comparepidcontrollers Simulink model.

model = 'comparepidcontrollers';
load_system(model)

Simulate Nominal Process

Simulate the model at the nominal operating conditions.

out1 = sim(model);

Plot the step response of the system for all three controllers.

plotOutput(out1,['Nominal: C=' num2str(C) ', L='  num2str(L) ', T=' num2str(T)])

2 Fuzzy Inference System Modeling

2-64



Obtain the step-response characteristics of the system for each controller.

stepResponseTable(out1)

ans=3×4 table
                  Rise Time (sec)    Overshoot (%)    Settling Time (sec)    Integral of Absolute Error
                  _______________    _____________    ___________________    __________________________

    PID               0.62412           11.234              4.5564                       1.04          
    Type-1 FLC         1.4267                0              4.1023                     1.1522          
    Type-2 FLC         1.8662                0               5.129                      1.282          

For the nominal process:

• Both the type-1 and type-2 fuzzy logic controllers outperform the conventional PID controller in
terms of overshoot.

• The conventional PID controller, performs better with respect to rise-time and integral of absolute
error (IAE).

• The type-1 FLC performs better than the type-2 FLC in terms of rise-time, settling-time, and IAE.

Simulate Modified Process

Modify the plant model by increasing the gain, time delay, and time constant values as compared to
the nominal process.

C = 0.85;
L = 0.6;
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T = 0.6;
G = tf(C,[T 1],'Outputdelay',L);

Simulate the model using the updated plant parameters.

out2 = sim(model);

Plot the step response of the system for all three controllers.

plotOutput(out2,['Modified 1: C=' num2str(C) ',L='  num2str(L) ',T=' num2str(T)])

Obtain the step-response characteristics of the system for each controller.

stepResponseTable(out2)

ans=3×4 table
                  Rise Time (sec)    Overshoot (%)    Settling Time (sec)    Integral of Absolute Error
                  _______________    _____________    ___________________    __________________________

    PID               0.38464           80.641              29.452                     4.7486          
    Type-1 FLC        0.47262           24.877              4.6788                     1.1137          
    Type-2 FLC        0.47262           22.787              3.4561                      1.076          

For this modified process:

• The conventional PID controller exhibits significant overshoot, larger settling-time, and higher IAE
as compared to the fuzzy logic controllers
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• For all performance measures, the type-2 FLC produces the same or superior performance
compared to the type-1 FLC.

Conclusion

Overall, the type-1 FLC produces superior performance for the nominal plant as compared to the
conventional PID controller. The type-2 FLC shows more robust performance for the modified plant.

The robustness of the conventional PID controller can be improved using different methods, such as
prediction or multiple PID controller configurations. On the other hand, the performance of a type-2
FLC can be improved by using a different:

• Rulebase
• Number of rules
• FOU

For example, you can create a type-2 FLC that defines the FOU using both the lower MF scaling
factor and lower MF lag.

For fis2, set the lower MF scale and lag values to 0.7 and 0.1, respectively for all input
membership functions.

for i = 1:length(fis2.Inputs)
    for j = 1:length(fis2.Inputs(i).MembershipFunctions)
        fis2.Inputs(i).MembershipFunctions(j).LowerScale = 0.7;
        fis2.Inputs(i).MembershipFunctions(j).LowerLag = 0.1;
    end
end

Plot the updated membership functions.

figure
subplot(1,2,1)
plotmf(fis2,'input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis2,'input',2)
title('Input 2')

 Fuzzy PID Control with Type-2 FIS

2-67



Simulate the model using the nominal plant, and plot the step responses for the controllers.

C = 0.5;
L = 0.5;
T = 0.5;
G = tf(C,[T 1],'Outputdelay',L);

out4 = sim(model);
close_system(model,0)
plotOutput(out4,['Nominal: C=' num2str(C) ', L='  num2str(L) ', T=' num2str(T)])
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Obtain the step-response characteristics of the system for each controller.

stepResponseTable(out4)

ans=3×4 table
                  Rise Time (sec)    Overshoot (%)    Settling Time (sec)    Integral of Absolute Error
                  _______________    _____________    ___________________    __________________________

    PID               0.62412           11.234              4.5564                       1.04          
    Type-1 FLC         1.4267                0              4.1023                     1.1522          
    Type-2 FLC         1.2179                0              3.8746                     1.1087          

In this case, the updated FOU of type-2 FLC improves the rise-time of the step response .

However, the lower MF lag values also increase the overshoot in the case of the modified plant.

C = 0.85;
L = 0.6;
T = 0.6;
G = tf(C,[T 1],'Outputdelay',L);

out5 = sim(model);
plotOutput(out5,['Nominal: C=' num2str(C) ', L='  num2str(L) ', T=' num2str(T)])
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stepResponseTable(out5)

ans=3×4 table
                  Rise Time (sec)    Overshoot (%)    Settling Time (sec)    Integral of Absolute Error
                  _______________    _____________    ___________________    __________________________

    PID               0.38464           80.641              29.452                     4.7486          
    Type-1 FLC        0.47262           24.877              4.6788                     1.1137          
    Type-2 FLC        0.47262           26.699              4.6812                     1.1278          

Therefore, to obtain desired step response characteristics, you can vary the lower MF scale and lag
values to find a suitable combination.

You can further improve the fuzzy logic controller outputs using a Mamdani type FIS since it also
provides lower MF scale and lag parameters for output membership functions. However, a Mamdani
type-2 FLC introduces additional computational delay due to the expensive type-reduction process.

References

[1] Mendel, J. M., Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, Second
Edition, Springer, 2017, pp. 229-234, 600-608.

Local Functions

function plotOutput(out,plotTitle)
figure
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plot([0 20],[1 1])
hold on
plot(out.yout{1}.Values)
plot(out.yout{2}.Values)
plot(out.yout{3}.Values)
hold off
grid minor
xlabel('Time (sec)')
ylabel('Output')
title(plotTitle)
legend(["Reference","PID","Type-1 FLC","Type-2 FLC"],'Location',"best")
end

function t = stepResponseTable(out)
s = stepinfo(out.yout{1}.Values.Data,out.yout{1}.Values.Time);
stepResponseInfo(1).RiseTime = s.RiseTime;
stepResponseInfo(1).Overshoot = s.Overshoot;
stepResponseInfo(1).SettlingTime = s.SettlingTime;
stepResponseInfo(1).IAE = out.yout{4}.Values.Data(end);

s = stepinfo(out.yout{2}.Values.Data,out.yout{2}.Values.Time);
stepResponseInfo(2).RiseTime = s.RiseTime;
stepResponseInfo(2).Overshoot = s.Overshoot;
stepResponseInfo(2).SettlingTime = s.SettlingTime;
stepResponseInfo(2).IAE = out.yout{5}.Values.Data(end);

s = stepinfo(out.yout{3}.Values.Data,out.yout{3}.Values.Time);
stepResponseInfo(3).RiseTime = s.RiseTime;
stepResponseInfo(3).Overshoot = s.Overshoot;
stepResponseInfo(3).SettlingTime = s.SettlingTime;
stepResponseInfo(3).IAE = out.yout{6}.Values.Data(end);

t = struct2table(stepResponseInfo,"RowNames",["PID" "Type-1 FLC" "Type-2 FLC"]);
t.Properties.VariableNames{1} = 'Rise Time (sec)';
t.Properties.VariableNames{2} = [t.Properties.VariableNames{2} ' (%)'];
t.Properties.VariableNames{3} = 'Settling Time (sec)';
t.Properties.VariableNames{4} = 'Integral of Absolute Error';
end

See Also
mamfistype2 | sugfistype2

More About
• “Type-2 Fuzzy Inference Systems” on page 2-7
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Fuzzy Logic Image Processing
This example shows how to use fuzzy logic for image processing. Specifically, this example shows how
to detect edges in an image.

An edge is a boundary between two uniform regions. You can detect an edge by comparing the
intensity of neighboring pixels. However, because uniform regions are not crisply defined, small
intensity differences between two neighboring pixels do not always represent an edge. Instead, the
intensity difference might represent a shading effect.

The fuzzy logic approach for image processing allows you to use membership functions to define the
degree to which a pixel belongs to an edge or a uniform region.

Import RGB Image and Convert to Grayscale

Import the image.

Irgb = imread('peppers.png');

Irgb is a 384 x 512 x 3 uint8 array. The three channels of Irgb (third array dimension) represent
the red, green, and blue intensities of the image.

Convert Irgb to grayscale so that you can work with a 2-D array instead of a 3-D array. To do so, use
the rgb2gray function.

Igray = rgb2gray(Irgb);

figure
image(Igray,'CDataMapping','scaled')
colormap('gray')
title('Input Image in Grayscale')
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Convert Image to Double-Precision Data

The evalfis function for evaluating fuzzy inference systems supports only single-precision and
double-precision data. Therefore, convert Igray to a double array using the im2double function.

I = im2double(Igray);

Obtain Image Gradient

The fuzzy logic edge-detection algorithm for this example relies on the image gradient to locate
breaks in uniform regions. Calculate the image gradient along the x-axis and y-axis.

Gx and Gy are simple gradient filters. To obtain a matrix containing the x-axis gradients of I, you
convolve I with Gx using the conv2 function. The gradient values are in the [-1 1] range. Similarly, to
obtain the y-axis gradients of I, convolve I with Gy.

Gx = [-1 1];
Gy = Gx';
Ix = conv2(I,Gx,'same');
Iy = conv2(I,Gy,'same');

Plot the image gradients.

figure
image(Ix,'CDataMapping','scaled')
colormap('gray')
title('Ix')
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figure
image(Iy,'CDataMapping','scaled')
colormap('gray')
title('Iy')
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You can use other filters to obtain the image gradients, such as the Sobel operator or the Prewitt
operator. For information about how you can filter an image using convolution, see “What Is Image
Filtering in the Spatial Domain?” (Image Processing Toolbox)

Alternatively, if you have the Image Processing Toolbox software, you can use the imfilter,
imgradientxy, or imgradient functions to obtain the image gradients.

Define Fuzzy Inference System (FIS) for Edge Detection

Create a fuzzy inference system (FIS) for edge detection, edgeFIS.

edgeFIS = mamfis('Name','edgeDetection');

Specify the image gradients, Ix and Iy, as the inputs of edgeFIS.

edgeFIS = addInput(edgeFIS,[-1 1],'Name','Ix');
edgeFIS = addInput(edgeFIS,[-1 1],'Name','Iy');

Specify a zero-mean Gaussian membership function for each input. If the gradient value for a pixel is
0, then it belongs to the zero membership function with a degree of 1.

sx = 0.1;
sy = 0.1;
edgeFIS = addMF(edgeFIS,'Ix','gaussmf',[sx 0],'Name','zero');
edgeFIS = addMF(edgeFIS,'Iy','gaussmf',[sy 0],'Name','zero');

sx and sy specify the standard deviation for the zero membership function for the Ix and Iy inputs.
To adjust the edge detector performance, you can change the values of sx and sy. Increasing the
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values makes the algorithm less sensitive to the edges in the image and decreases the intensity of the
detected edges.

Specify the intensity of the edge-detected image as an output of edgeFIS.

edgeFIS = addOutput(edgeFIS,[0 1],'Name','Iout');

Specify the triangular membership functions, white and black, for Iout.

wa = 0.1;
wb = 1;
wc = 1;
ba = 0;
bb = 0;
bc = 0.7;
edgeFIS = addMF(edgeFIS,'Iout','trimf',[wa wb wc],'Name','white');
edgeFIS = addMF(edgeFIS,'Iout','trimf',[ba bb bc],'Name','black');

As you can with sx and sy, you can change the values of wa, wb, wc, ba, bb, and bc to adjust the
edge detector performance. The triplets specify the start, peak, and end of the triangles of the
membership functions. These parameters influence the intensity of the detected edges.

Plot the membership functions of the inputs and outputs of edgeFIS.

figure
subplot(2,2,1)
plotmf(edgeFIS,'input',1)
title('Ix')
subplot(2,2,2)
plotmf(edgeFIS,'input',2)
title('Iy')
subplot(2,2,[3 4])
plotmf(edgeFIS,'output',1)
title('Iout')
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Specify FIS Rules

Add rules to make a pixel white if it belongs to a uniform region and black otherwise. A pixel is in a
uniform region when the image gradient is zero in both directions. If either direction has a nonzero
gradient, then the pixel is on an edge.

r1 = "If Ix is zero and Iy is zero then Iout is white";
r2 = "If Ix is not zero or Iy is not zero then Iout is black";
edgeFIS = addRule(edgeFIS,[r1 r2]);
edgeFIS.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                       Description              
         _______________________________________

    1    "Ix==zero & Iy==zero => Iout=white (1)"
    2    "Ix~=zero | Iy~=zero => Iout=black (1)"
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Evaluate FIS

Evaluate the output of the edge detector for each row of pixels in I using corresponding rows of Ix
and Iy as inputs.

Ieval = zeros(size(I));
for ii = 1:size(I,1)
    Ieval(ii,:) = evalfis(edgeFIS,[(Ix(ii,:));(Iy(ii,:))]');
end

Plot Results

Plot the original grayscale image.

figure
image(I,'CDataMapping','scaled')
colormap('gray')
title('Original Grayscale Image')

Plot the detected edges.

figure
image(Ieval,'CDataMapping','scaled')
colormap('gray')
title('Edge Detection Using Fuzzy Logic')

2 Fuzzy Inference System Modeling

2-78



See Also
evalfis

More About
• “Build Fuzzy Systems at the Command Line” on page 2-31
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Fuzzy Inference System Tuning

• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Fuzzy Rules and Membership Function Parameters” on page 3-6
• “Tune Fuzzy Trees” on page 3-15
• “Customize FIS Tuning Process” on page 3-20
• “Tune Mamdani Fuzzy Inference System” on page 3-27
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-37
• “FIS Parameter Optimization with K-fold Cross Validation” on page 3-50
• “Predict Chaotic Time Series Using Type-2 FIS” on page 3-57
• “Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function” on page 3-70
• “Classify Pixels Using Fuzzy Systems” on page 3-81
• “Autonomous Parking Using Fuzzy Inference System” on page 3-97
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-120
• “Save Training Error Data to MATLAB Workspace” on page 3-130
• “Predict Chaotic Time-Series using ANFIS” on page 3-136
• “Modeling Inverse Kinematics in a Robotic Arm” on page 3-144
• “Adaptive Noise Cancellation Using ANFIS” on page 3-152
• “Nonlinear System Identification” on page 3-160
• “Gas Mileage Prediction” on page 3-173
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Tuning Fuzzy Inference Systems
Designing a complex fuzzy inference system (FIS) with a large number of inputs and membership
functions (MFs) is a challenging problem due to the large number of MF parameters and rules. To
design such a FIS, you can use a data-driven approach to learn rules and tune FIS parameters. To
tune a fuzzy system, use the tunefis function and configure the tuning process using a
tunefisOptions object.

Using Fuzzy Logic Toolbox software, you can tune both type-1 and type-2 FISs as well as FIS trees.
For examples, see “Predict Chaotic Time Series Using Type-2 FIS” on page 3-57 and “Tune FIS Tree
for Gas Mileage Prediction” on page 3-37.

During training, the optimization algorithm generates candidate FIS parameter sets. The fuzzy
system is updated with each parameter set and then evaluated using the input training data.

If you have input/output training data, the cost for each solution is computed based on the difference
between the output of the fuzzy system and the expected output values from the training data. For an
example that uses this approach, see Tune Mamdani Fuzzy Inference System.
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If you do not have input/output training data, you can specify a custom model and cost function for
evaluating candidate FIS parameter sets. For more information and an example that uses this
approach, see “Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function” on page
3-70.

For more information on tuning fuzzy systems see the following examples.

• “Tune Fuzzy Rules and Membership Function Parameters” on page 3-6
• “Tune Fuzzy Trees” on page 3-15
• “Customize FIS Tuning Process” on page 3-20

Tuning Methods
The following table shows the tuning methods supported by the tunefis function. These tuning
methods find the optimal FIS parameters
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Method Description More Information
Genetic algorithm Population-based global

optimization method that
searches randomly by
mutation and crossover
among population members

“What Is the Genetic Algorithm?”
(Global Optimization Toolbox)

Particle swarm optimization Population-based global
optimization method in which
population members step
throughout a search region

“What Is Particle Swarm
Optimization?” (Global Optimization
Toolbox)

Pattern search Direct-search local
optimization method that
searches a set of points near
the current point to find a
new optimum

“What Is Direct Search?” (Global
Optimization Toolbox)

Simulated annealing A local optimization method
that simulates a heating and
cooling process to that finds
a new optimal point near the
current point

“What Is Simulated Annealing?”
(Global Optimization Toolbox)

Adaptive neuro-fuzzy
inference

Back-propagation algorithm
that tunes membership
function parameters.
Alternatively, you can use the
anfis function.

“Neuro-Adaptive Learning and ANFIS”
on page 3-114

The first four tuning methods require Global Optimization Toolbox software.

Global optimization methods, such as genetic algorithms and particle swarm optimization, perform
better for large parameter tuning ranges. These algorithms are useful for both the rule-learning and
parameter-tuning stages of FIS optimization.

On the other hand, local search methods, such as pattern search and simulated annealing, perform
better for small parameter ranges. If a FIS is generated from training data using genfis or a rule
base is already added to a FIS using training data, then these algorithms can produce faster
convergence compared to global optimization methods.

Prevent Overfitting of Tuned System
Data overfitting is a common problem in FIS parameter optimization. When overfitting occurs, the
tuned FIS produces optimized results for the training data set but performs poorly for a test data set.
To overcome the data overfitting problem, a tuning process can stop early based on an unbiased
evaluation of the model using a separate validation dataset.

When tuning using the tunefis function, you can prevent overfitting using k-fold cross validation. To
prevent For more information and an example, see “FIS Parameter Optimization with K-fold Cross
Validation” on page 3-50.
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Improve Tuning Results
To improve the performance of your tuned fuzzy systems, consider the following guidelines.

• Use multiple phases in your tuning process. For example, first learn the rules of a fuzzy system,
and then tune input/output MF parameters using the learned rule base.

• Increase the number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to
overtuned system parameters with the training data. To avoid overfitting, train your system using
k-fold cross validation.

• Change the clustering technique used by genfis. Depending on the clustering technique, the
generated rules can differ in their representation of the training data. Hence, the use of different
clustering techniques can affect the performance of tunefis.

• Change FIS properties. Try changing properties such as the type of FIS, number of inputs, number
of input/output MFs, MF types, and number of rules. A Sugeno system has fewer output MF
parameters (assuming constant MFs) and faster defuzzification. Therefore, for fuzzy systems with
a large number of inputs, a Sugeno FIS generally converges faster than a Mamdani FIS. Small
numbers of MFs and rules reduce the number of parameters to tune, producing a faster tuning
process. Furthermore, a large number of rules might overfit the training data.

• Modify tunable parameter settings for MFs and rules. For example, you can tune the support of a
triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices by setting the AllowEmpty tunable setting to false, which reduces the
overall number of rules during the learning phase.

To improve the tuning results for fuzzy trees, consider the following guidelines.

• You can separately tune the parameters of each FIS in a FIS tree. You can then tune all the fuzzy
systems together to generalize the parameter values.

• Change FIS tree properties, such as the number of fuzzy systems and the connections between the
fuzzy systems.

• Use different rankings and groupings of the inputs to a FIS tree. For more information about
creating FIS trees, see Fuzzy Trees.

See Also
genfis | getTunableSettings | tunefis

More About
• “Tune Mamdani Fuzzy Inference System” on page 3-27
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-37
• “Predict Chaotic Time Series Using Type-2 FIS” on page 3-57
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Tune Fuzzy Rules and Membership Function Parameters
When tuning a fuzzy inference system (FIS) using the tunefis function, you can:

• Tune membership function parameters for input and output variables.
• Learn fuzzy rules.
• Tune the antecedent and consequent parameters of fuzzy rules.

For more information on tuning a FIS, see “Tuning Fuzzy Inference Systems” on page 3-2.

Tune Membership Function Parameters

For both type-1 and type-2 FISs, you can specify tunable parameter settings for the input and output
MFs and tune the values of the selected parameters. You can tune the parameters for any
combination of input and output MFs. This example shows an example workflow using a type-1 FIS.
For an example that tunes a type-2 FIS, see “Predict Chaotic Time Series Using Type-2 FIS” on page
3-57.

Create a FIS.

fis = mamfis;
fis = addInput(fis,[0 10],'NumMFs',3);
fis = addOutput(fis,[0 1],'NumMFs',3);
fis = addRule(fis,[1 1 1 1;1 1 1 1;1 1 1 1]);

Extract input and output parameter settings from the FIS.

[in,out] = getTunableSettings(fis)

in = 
  VariableSettings with properties:

                   Type: "input"
           VariableName: "input1"
    MembershipFunctions: [1×3 fuzzy.tuning.MembershipFunctionSettings]
                FISName: "fis"

out = 
  VariableSettings with properties:

                   Type: "output"
           VariableName: "output1"
    MembershipFunctions: [1×3 fuzzy.tuning.MembershipFunctionSettings]
                FISName: "fis"

The parameter settings are represented by VariableSettings objects that include the FIS name,
variable type, variable name, and MF parameter settings. Examine the parameter settings of MF 1 of
input 1.

in(1).MembershipFunctions(1).Parameters

ans = 
  NumericParameters with properties:
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    Minimum: [-Inf -Inf -Inf]
    Maximum: [Inf Inf Inf]
       Free: [1 1 1]

For each parameter value of an input/output MF, you can specify whether it is available for tuning
and its minimum and maximum values. By default, all MF parameters are free for tuning and their
ranges are set to [-Inf,Inf]. Make MF 1 of input 1 nontunable.

in(1).MembershipFunctions(1) = setTunable(in(1).MembershipFunctions(1),false);

Similarly, make the first parameter of MF 2 of input 1 nontunable.

in(1).MembershipFunctions(2).Parameters.Free(1) = false;

Set minimum ranges for the second and third parameters of MF 3 of input 1 to 0.

in(1).MembershipFunctions(3).Parameters.Minimum(2:3) = 0;

Set maximum ranges for second and third parameters of MF 3 of input 1 to 15.

in(1).MembershipFunctions(3).Parameters.Maximum(2:3) = 15;

The default minimum and maximum range values of tunable MF parameters are set to corresponding
input/output ranges in the tuning process.

Finally, make the output nontunable.

out = setTunable(out,false);

Specify input and output training data. For this example, generate training data using the following
function.

y = sin 2x
ex/5

x = (0:0.1:10)';
y = abs(sin(2*x)./exp(x/5));

Specify options for tunefis. For this example, use the genetic algorithm tuning method.

options = tunefisOptions("Method","ga");

Specify a maximum of five generations for optimization.

options.MethodOptions.MaxGenerations = 5;

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

By default, tunefis uses root mean squared error (RMSE) for cost calculation. You can change the
cost function to norm1 or norm2 by setting options.DistanceMetric.

options.DistanceMetric = "norm1";

Tune fis using the parameter settings, training data, and tuning options.
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rng('default') % for reproducibility
[fisout,optimout] = tunefis(fis,[in;out],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           32.84           32.84        0
    2              147           32.84           32.84        1
    3              194           32.84           32.84        2
    4              241           32.84           32.84        3
    5              288           32.84           32.84        4
Optimization terminated: maximum number of generations exceeded.

fisout includes the updated parameter values. optimout provides additional outputs of the
optimization method and any error messages that are returned during the update process of the input
fuzzy system using the optimized parameter values.

optimout

optimout = struct with fields:
    tuningOutputs: [1×1 struct]
    totalFcnCount: 288
     totalRuntime: 2.4028
     errorMessage: []

optimout.tuningOutputs

ans = struct with fields:
             x: [5 9.1667 5.8333 10 14.1667]
          fval: 32.8363
      exitflag: 0
        output: [1×1 struct]
    population: [50×5 double]
        scores: [50×1 double]

You can optionally tune fis using either the just the input or output parameter settings. Since the
output parameter settings are set to nontunable, tuning the FIS with just the input parameter
settings produces the same results.

rng('default')
[fisout,optimout] = tunefis(fis,in,x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           32.84           32.84        0
    2              147           32.84           32.84        1
    3              194           32.84           32.84        2
    4              241           32.84           32.84        3
    5              288           32.84           32.84        4
Optimization terminated: maximum number of generations exceeded.

optimout

optimout = struct with fields:
    tuningOutputs: [1×1 struct]
    totalFcnCount: 288
     totalRuntime: 1.5392
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     errorMessage: []

optimout.tuningOutputs

ans = struct with fields:
             x: [5 9.1667 5.8333 10 14.1667]
          fval: 32.8363
      exitflag: 0
        output: [1×1 struct]
    population: [50×5 double]
        scores: [50×1 double]

Tune Fuzzy Rules

In addition to tuning membership function parameters, you can tune the antecedent and consequent
parameters of the rules in a fuzzy system.

Obtain rule parameter settings from a fuzzy system using getTunableSettings.

[~,~,rule] = getTunableSettings(fis)

rule=3×1 object
  3×1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName

Each rule parameter setting includes the FIS name, index of the rule in the FIS, and parameter
settings for the rule antecedent and consequent (the rule clauses).

The parameter settings for a rule clause include three options:

• Whether the input/output MF indices are available for tuning. By default, clause parameters are
free for tuning.

• Whether the clause allows use of NOT logic, in other words, whether it allows negative MF
indices. By default, rules do not allow NOT logic.

• Whether the clause allows the absence of input/output variables, in other words, if it allows zero
MF indices. By default, the absence of a variable is allowed.

rule(1).Antecedent(1)

ans = 
  ClauseParameters with properties:

      AllowNot: 0
    AllowEmpty: 1
          Free: 1

Allow NOT logic in the antecedent of rule 1.

rule(1).Antecedent.AllowNot = true;
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Make the consequent of rule 1 not available for tuning.

rule(1).Consequent.Free = 0;

Do not allow absence of a variable in the consequent of rule 2.

rule(2).Consequent.AllowEmpty = false;

Set rule 3 as nontunable.

rule(3) = setTunable(rule(3),false);

Set options.DistanceMetric to norm2.

options.DistanceMetric = "norm2";

Tune fis using the rule parameter settings.

rng('default')  % for reproducibility
fisout = tunefis(fis,rule,x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           1.648           2.575        0
    2              147           1.648           2.448        1
    3              194           1.648           2.212        2
    4              241           1.648           2.052        3
    5              288           1.648           1.874        4
Optimization terminated: maximum number of generations exceeded.

Since you specified rule 3 as nontunable, you can exclude rule 3 when you tune fis. Doing so
produces the same tuning result.

rng('default')  % for reproducibility
fisout = tunefis(fis,rule(1:2),x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           1.648           2.575        0
    2              147           1.648           2.448        1
    3              194           1.648           2.212        2
    4              241           1.648           2.052        3
    5              288           1.648           1.874        4
Optimization terminated: maximum number of generations exceeded.

Learn Fuzzy Rules

You can configure tunefis to learn the rules of a fuzzy system. To do so, set the
OptimizationType option of tunefisOptions to learning.

fisin = fis;
fisin.Rules = [];
options.OptimizationType = 'learning';

Set the maximum number of rules in the tuned FIS to three.

options.NumMaxRules = 3;

The size of the tuned rule base may be less than NumMaxRules, because tunefis removes duplicate
rules from the tuned FIS. If you do not specify NumMaxRules, then tunefis adds the maximum
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number of rules determined by the possible combinations of input MFs. The default input MF
combinations include zero MF indices, which allow absence of variables. The default combinations
exclude negative MF indices, so that NOT logic is not allowed.

Set options.DistanceMetric to rmse and tune the FIS.

options.DistanceMetric = "rmse";
rng('default')  % for reproducibility
fisout = tunefis(fisin,[],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400           0.165          0.2973        0
    2              590           0.165          0.2891        1
    3              780           0.165          0.2685        2
    4              970           0.165          0.2548        3
    5             1160           0.165          0.2378        4
Optimization terminated: maximum number of generations exceeded.

During the tuning process, the FIS automatically learns rules after cost optimization with the training
data. Examine the tuned rules.

fisout.Rules

ans = 
  1×3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf3 => output1=mf1 (1)"
    2    "input1==mf1 => output1=mf2 (1)"
    3    "input1==mf2 => output1=mf1 (1)"

You can remove some of the existing rules and learn additional rules.

fisout.Rules(2:end) = [];
rng('default')  % for reproducibility
fisout = tunefis(fisin,[],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400           0.165          0.2973        0
    2              590           0.165          0.2891        1
    3              780           0.165          0.2685        2
    4              970           0.165          0.2548        3
    5             1160           0.165          0.2378        4
Optimization terminated: maximum number of generations exceeded.

fisout.Rules
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ans = 
  1×3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf3 => output1=mf1 (1)"
    2    "input1==mf1 => output1=mf2 (1)"
    3    "input1==mf2 => output1=mf1 (1)"

You can also tune the antecedents and consequents of existing rules and learn new rules. To do so,
obtain the rule tunable parameter settings and pass them to the tunefis function.

fisout.Rules(2:end) = [];
fisout.Rules(1).Antecedent = 1;
fisout.Rules(1).Consequent = 1;
[~,~,rule] = getTunableSettings(fisout);
rng('default')
fisout = tunefis(fisin,rule,x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400           0.165          0.3075        0
    2              590           0.165          0.2738        1
    3              780           0.165          0.2545        2
    4              970           0.165          0.2271        3
    5             1160           0.165          0.2083        4
Optimization terminated: maximum number of generations exceeded.

fisout.Rules

ans = 
  1×3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf2 (1)"
    2    "input1==mf2 => output1=mf1 (1)"
    3    "input1==mf3 => output1=mf1 (1)"
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Tune MF and Rule Parameters

You can tune all MF and rule parameters simultaneously. First obtain all parameter settings for the
FIS.

[in,out,rule] = getTunableSettings(fis);

Configure the tuning options.

options = tunefisOptions('Method','ga');
options.MethodOptions.MaxGenerations = 5;

Tune the MF and rule parameters of the FIS.

rng('default')  % for reproducibility
fisout = tunefis(fis,[in;out;rule],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400          0.1624          0.2997        0
    2              590          0.1624          0.2776        1
    3              780          0.1624          0.2653        2
    4              970          0.1592          0.2486        0
    5             1160          0.1592          0.2342        1
Optimization terminated: maximum number of generations exceeded.

For a large fuzzy system, tuning all FIS parameters in the same tuning process can take several
iterations to obtain the expected results. To improve the tuning time, you can tune parameters using
the following two steps.

1 Tune or learn rule parameters only.
2 Tune both MF and rule parameters.

The learning and tuning rules is less computationally expensive due to the small number of rule
parameters. Therefore, the first step quickly converges to a fuzzy rule base during training. In the
second step, using the rule base from the first step as an initial condition improves convergence of
the parameter tuning process.

Generate FIS from Data and Tune

To generate an initial rule base for tuning, you can generate a FIS from your training data using the
genfis function. You can then optimize the FIS using tunefis. In this approach, the tuning process
can employ a local optimization method because the rule base is derived from the training data.

This example uses the same training data as the preceding examples.

Create options for genfis that specify five MFs, a Gaussian MF for the input, and a constant MF for
the output.

goptions = genfisOptions('GridPartition','NumMembershipFunctions',5, ...
    'InputMembershipFunctionType','gaussmf', ...
    'OutputMembershipFunctionType','constant');

Generate the initial FIS, and get its parameter settings.

fisin = genfis(x,y,goptions);
[in,out,rule] = getTunableSettings(fisin);
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Use the pattern search method for optimization, setting the maximum number of iterations to 25, and
tune the FIS.

toptions = tunefisOptions('Method','patternsearch');
toptions.MethodOptions.MaxIterations = 25;
rng('default')
fisout = tunefis(fisin,[in;out],x,y,toptions);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.346649             1      
    1          19       0.346649           0.5     Refine Mesh
    2          37       0.273812             1     Successful Poll
    3          38       0.236413             2     Successful Poll
    4          39       0.190794             4     Successful Poll
    5          40       0.182142             8     Successful Poll
    6          47       0.182142             4     Refine Mesh
    7          49       0.162927             8     Successful Poll
    8          56       0.162927             4     Refine Mesh
    9          67       0.162927             2     Refine Mesh
   10          69       0.159539             4     Successful Poll
   11          80       0.159539             2     Refine Mesh
   12          92       0.159539             1     Refine Mesh
   13          94       0.159421             2     Successful Poll
   14         106       0.159373             4     Successful Poll
   15         117       0.159373             2     Refine Mesh
   16         125       0.159185             4     Successful Poll
   17         136       0.159185             2     Refine Mesh
   18         151       0.159185             1     Refine Mesh
   19         152        0.15914             2     Successful Poll
   20         167        0.15914             1     Refine Mesh
   21         170       0.158914             2     Successful Poll
   22         185       0.158914             1     Refine Mesh
   23         187       0.158839             2     Successful Poll
   24         202       0.158839             1     Refine Mesh
   25         206       0.158366             2     Successful Poll
   26         215       0.158121             4     Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

You can increase the number of iterations to further optimize the cost.

See Also
genfis | getTunableSettings | tunefis

More About
• “Tune Mamdani Fuzzy Inference System” on page 3-27
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-37
• “Tune Fuzzy Trees” on page 3-15

3 Fuzzy Inference System Tuning

3-14



Tune Fuzzy Trees
You can tune the parameters of a FIS tree using a similar two-step process as shown in “Tuning Fuzzy
Inference Systems” on page 3-2.

• Learn and tune the rules of the FISs in the tree.
• Learn the MF parameters of the FISs in the tree.

Create a FIS tree to model for sin x + cos x
exp x  as shown in the following figure. For more information on

creating FIS trees, see “Fuzzy Trees” on page 2-52.

Create fis1 as a Sugeno type FIS, which results in a faster tuning process due to computationally
efficient defuzzification method. Add two inputs, both with range the [0, 10] and with three MFs each.
Use a smooth differentiable MF, such as gaussmf, to match the characteristics of the data type you
are modeling.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf');
fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf');

Add an output with the range [–1.5, 1.5] having nine MFs corresponding to the nine possible input
MF combinations. Doing so provides maximum granularity for the FIS rules. Set the output range
according to the possible values of sin x + cos x .

fis1 = addOutput(fis1,[-1.5 1.5],'NumMFs',9);

Create fis2 as a Sugeno type FIS. Add two inputs. Set the range of the first input to [-1.5, 1.5],
which matches the range of the output of fis1. The second input is the same as the inputs of fis1.
Therefore, use the same input range, [0, 10]. Add three MFs for each of the inputs.

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,[-1.5 1.5],'NumMFs',3,'MFType','gaussmf');
fis2 = addInput(fis2,[0 10],'NumMFs',3,'MFType','gaussmf');

Add an output with range [0 1] and nine MFs. The output range is set according to the possible
values of sin x + cos x

exp x .
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fis2 = addOutput(fis2,[0 1],'NumMFs',9);

Connect the inputs and the outputs as shown in the diagram. Output 1 of fis1 connects to input 1 of
fis2, inputs 1 and 2 of fis1 connect to each other, and input 2 of fis1 connects to input 2 of fis2.

con1 = ["fis1/output1" "fis2/input1"];
con2 = ["fis1/input1" "fis1/input2"];
con3 = ["fis1/input2" "fis2/input2"];

Finally, create a FIS tree using the specified FISs and connections.

fisT = fistree([fis1 fis2],[con1;con2;con3]);

Add an additional output to the FIS tree to access the output of fis1.

fisT.Outputs = ["fis1/output1";fisT.Outputs];

Generate input and output training data.

x = (0:0.1:10)';
y1 = sin(x)+cos(x);
y2 = y1./exp(x);
y = [y1 y2];

Tune the FIS tree parameters in two steps. First, learn the rules of the FIS tree using a global
optimization method (particle swarm for this example).

options = tunefisOptions('Method','particleswarm','OptimizationType','learning');

This tuning step uses a small number of iterations to learn a rule base without overfitting the training
data. The rule base provides an educated initial condition for the second step to optimize all the FIS
tree parameters together. Set the maximum iteration number to 5, and learn the rule base.

options.MethodOptions.MaxIterations = 5;
rng('default')  % for reproducibility
fisTout1 = tunefis(fisT,[],x,y,options);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100          0.6682          0.9395        0
    1             200          0.6682           1.023        0
    2             300          0.6652          0.9308        0
    3             400          0.6259           0.958        0
    4             500          0.6259           0.918        1
    5             600          0.5969          0.9179        0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Next, to tune all the FIS tree parameters, use a local optimization method (pattern search for this
example). Local optimization is generally faster than global optimization and can produce better
results when the input fuzzy system parameters are already consistent with the training data.

Use the patternsearch method for optimization. Set the number of iterations to 25.

options.Method = 'patternsearch';
options.MethodOptions.MaxIterations = 25;

Use getTunableSettings to obtain input, output, and rule parameter settings from the FIS tree.

[in,out,rule] = getTunableSettings(fisTout1);
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Tune the FIS tree parameters.

rng('default') % for reproducibility
fisTout2 = tunefis(fisTout1,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.596926             1      
    1           3       0.551284             2     Successful Poll
    2          13       0.548551             4     Successful Poll
    3          20       0.546331             8     Successful Poll
    4          33       0.527482            16     Successful Poll
    5          33       0.527482             8     Refine Mesh
    6          61       0.511532            16     Successful Poll
    7          61       0.511532             8     Refine Mesh
    8          92       0.505355            16     Successful Poll
    9          92       0.505355             8     Refine Mesh
   10         128       0.505355             4     Refine Mesh
   11         175       0.487734             8     Successful Poll
   12         212       0.487734             4     Refine Mesh
   13         265       0.487734             2     Refine Mesh
   14         275       0.486926             4     Successful Poll
   15         328       0.486926             2     Refine Mesh
   16         339       0.483683             4     Successful Poll
   17         391       0.483683             2     Refine Mesh
   18         410       0.442624             4     Successful Poll
   19         462       0.442624             2     Refine Mesh
   20         469        0.44051             4     Successful Poll
   21         521        0.44051             2     Refine Mesh
   22         542       0.435381             4     Successful Poll
   23         594       0.435381             2     Refine Mesh
   24         614       0.398872             4     Successful Poll
   25         662       0.398385             8     Successful Poll
   26         698       0.398385             4     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

The optimization cost reduces from 0.59 to 0.39 in the second step.

Alternatively, you can tune the specific fuzzy systems within a FIS tree. For this example, after
learning the rule base of the FIS tree, separately tune fis1 and fis2 parameters.

To obtain parameter settings of a FIS within the FIS tree, use getTunableSettings, specifying the
FIS name. First, get the parameter settings for fis1.

[in,out,rule] = getTunableSettings(fisTout1,"FIS","fis1");

Tune the parameters of fis1.

rng('default')
fisTout2 = tunefis(fisTout1,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.596926             1      
    1           3       0.551284             2     Successful Poll
    2          18       0.510362             4     Successful Poll
    3          28       0.494804             8     Successful Poll
    4          56       0.494804             4     Refine Mesh
    5          84       0.493422             8     Successful Poll
    6         107       0.492883            16     Successful Poll
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    7         107       0.492883             8     Refine Mesh
    8         136       0.492883             4     Refine Mesh
    9         171       0.492883             2     Refine Mesh
   10         178       0.491534             4     Successful Poll
   11         213       0.491534             2     Refine Mesh
   12         229       0.482682             4     Successful Poll
   13         264       0.482682             2     Refine Mesh
   14         279       0.446645             4     Successful Poll
   15         313       0.446645             2     Refine Mesh
   16         330        0.44657             4     Successful Poll
   17         364        0.44657             2     Refine Mesh
   18         384       0.446495             4     Successful Poll
   19         418       0.446495             2     Refine Mesh
   20         461       0.445938             4     Successful Poll
   21         495       0.445938             2     Refine Mesh
   22         560       0.422421             4     Successful Poll
   23         594       0.422421             2     Refine Mesh
   24         597       0.397265             4     Successful Poll
   25         630       0.397265             2     Refine Mesh
   26         701       0.390338             4     Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

In this case, the optimization cost is improved by tuning only fis1 parameter values.

Next, obtain the parameter settings for fis2 and tune the fis2 parameters.

[in,out,rule] = getTunableSettings(fisTout2,"FIS","fis2");
rng('default') 
fisTout3 = tunefis(fisTout2,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.390338             1      
    1           2       0.374103             2     Successful Poll
    2           5       0.373855             4     Successful Poll
    3          10       0.356619             8     Successful Poll
    4          33       0.356619             4     Refine Mesh
    5          43       0.350715             8     Successful Poll
    6          65       0.349417            16     Successful Poll
    7          65       0.349417             8     Refine Mesh
    8          87       0.349417             4     Refine Mesh
    9          91       0.349356             8     Successful Poll
   10         112       0.349356             4     Refine Mesh
   11         138       0.346102             8     Successful Poll
   12         159       0.346102             4     Refine Mesh
   13         172       0.345938             8     Successful Poll
   14         193       0.345938             4     Refine Mesh
   15         222       0.342721             8     Successful Poll
   16         244       0.342721             4     Refine Mesh
   17         275       0.342721             2     Refine Mesh
   18         283       0.340727             4     Successful Poll
   19         312       0.340554             8     Successful Poll
   20         335       0.340554             4     Refine Mesh
   21         366       0.340554             2     Refine Mesh
   22         427       0.337873             4     Successful Poll
   23         457       0.337873             2     Refine Mesh
   24         521        0.33706             4     Successful Poll
   25         551        0.33706             2     Refine Mesh
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   26         624       0.333193             4     Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

The optimization cost is further reduced by tuning the fis2 parameter values. To avoid overfitting of
individual FIS parameter values, you can further tune both fis1 and fis2 parameters together.

[in,out,rule] = getTunableSettings(fisTout3);
rng('default') 
fisTout4 = tunefis(fisTout3,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.333193             1      
    1           8       0.326804             2     Successful Poll
    2          91       0.326432             4     Successful Poll
    3         116       0.326261             8     Successful Poll
    4         154       0.326261             4     Refine Mesh
    5         205       0.326261             2     Refine Mesh
    6         302       0.326092             4     Successful Poll
    7         352       0.326092             2     Refine Mesh
    8         391       0.325964             4     Successful Poll
    9         441       0.325964             2     Refine Mesh
   10         478        0.32578             4     Successful Poll
   11         528        0.32578             2     Refine Mesh
   12         562       0.325691             4     Successful Poll
   13         612       0.325691             2     Refine Mesh
   14         713       0.229273             4     Successful Poll
   15         763       0.229273             2     Refine Mesh
   16         867        0.22891             4     Successful Poll
   17         917        0.22891             2     Refine Mesh
   18        1036       0.228688             4     Successful Poll
   19        1086       0.228688             2     Refine Mesh
   20        1212       0.228688             1     Refine Mesh
   21        1266       0.228445             2     Successful Poll
   22        1369       0.228441             4     Successful Poll
   23        1381       0.227645             8     Successful Poll
   24        1407       0.226125            16     Successful Poll
   25        1407       0.226125             8     Refine Mesh
   26        1447       0.226125             4     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

Overall, the optimization cost is smaller after using the three tuning steps.

See Also
getTunableSettings | tunefis

More About
• “Fuzzy Trees” on page 2-52
• “Tune Mamdani Fuzzy Inference System” on page 3-27
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Customize FIS Tuning Process
You can customize the FIS tuning process by specifying either a custom cost function or a custom
optimization method.

For more information on tuning a FIS, see “Tune Fuzzy Rules and Membership Function Parameters”
on page 3-6 and “Tune Fuzzy Trees” on page 3-15.

Tune FIS Using Custom Cost Function

You can specify a custom cost function for tuning your fuzzy system. Doing so is useful for:

• Training a FIS using a custom model without using input/output training data. For an example, see
“Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function” on page 3-70.

• Combining the outputs of the component FISs of a FIS tree using mathematical operations, as
shown in this example.

As an example, consider the FIS tree from “Tune Fuzzy Trees” on page 3-15. Suppose you cant you
want to modify the FIS tree as shown in the following diagram, combining the FIS outputs using
known mathematical operations from the training data.

Create the FIS tree.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf');
fis1 = addOutput(fis1,[-1 1],'NumMFs',3);

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,[0 10],'NumMFs',3,'MFType','gaussmf');
fis2 = addOutput(fis2,[-1 1],'NumMFs',3);

fis3 = sugfis('Name','fis3');
fis3 = addInput(fis3,[0 10],'NumMFs',3,'MFType','gaussmf');
fis3 = addOutput(fis3,[0 1],'NumMFs',3);

con = ["fis1/input1" "fis2/input1";"fis2/input1" "fis3/input1"];

fisT = fistree([fis1 fis2 fis3],con);

3 Fuzzy Inference System Tuning

3-20



Generate training data.

x = (0:0.1:10)';
y1 = sin(x)+cos(x);
y2 = y1./exp(x);
y = [y1;y2];

To implement the addition and multiplication operations, use a custom cost function. For this
example, use the function customcostfcn, included at the end of the example. Learn a rule base
using this cost function.

options = tunefisOptions('Method',"particleswarm",'OptimizationType',"learning");
options.MethodOptions.MaxIterations = 5;
rng('default')
fisTout1 = tunefis(fisT,[],@(fis)customcostfcn(fis,x,y),options);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100           0.746            1.31        0
    1             200          0.5089           1.249        0
    2             300          0.5089           1.086        1
    3             400          0.5089           1.112        2
    4             500          0.5089           1.106        3
    5             600          0.4999           1.051        0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Next, tune all the parameters of the FIS tree.

options.Method = 'patternsearch';
options.MethodOptions.MaxIterations = 25;
[in,out,rule] = getTunableSettings(fisTout1);
rng('default')
fisTout2 = tunefis(fisTout1,[in;out;rule],@(fis)customcostfcn(fis,x,y),options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.499882             1      
    1          13       0.499864             2     Successful Poll
    2          51       0.499727             4     Successful Poll
    3          72       0.499727             2     Refine Mesh
    4         117       0.499727             1     Refine Mesh
    5         157       0.499542             2     Successful Poll
    6         170       0.499485             4     Successful Poll
    7         191       0.499485             2     Refine Mesh
    8         217       0.499483             4     Successful Poll
    9         238       0.499483             2     Refine Mesh
   10         275       0.499483             4     Successful Poll
   11         296       0.499483             2     Refine Mesh
   12         340       0.499483             1     Refine Mesh
   13         381       0.499483             2     Successful Poll
   14         425       0.499483             1     Refine Mesh
   15         497       0.499483           0.5     Refine Mesh
   16         536       0.499394             1     Successful Poll
   17         547       0.499217             2     Successful Poll
   18         560       0.499217             4     Successful Poll
   19         581       0.499217             2     Refine Mesh
   20         593       0.499164             4     Successful Poll
   21         614       0.499164             2     Refine Mesh
   22         658       0.499164             1     Refine Mesh
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   23         699       0.499111             2     Successful Poll
   24         744       0.499111             1     Refine Mesh
   25         816       0.499111           0.5     Refine Mesh
   26         857       0.499085             1     Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

You can add more input/output MFs and specify additional FIS tree outputs to improve the tuning
performance. Using additional MF parameters and more training data for additional FIS tree outputs
can further fine tune the outputs of fis1, fis2, and fis3.

Tune FIS Using Custom Optimization Method

You can also implement your own FIS parameter optimization method using getTunableSettings,
getTunableValues, and setTunableValues. This example uses these functions to tune a rule
base of a fuzzy system.

Create a FIS to approximate sin θ , where θ varies from 0 to 2π.

fisin = mamfis;

Add an input with a range of [0, 2π] and having five Gaussian MFs. Also, ass an output with a range
of [–1, 1] and having five Gaussian MFs.

fisin = addInput(fisin,[0 2*pi],'NumMFs',5,'MFType','gaussmf');
fisin = addOutput(fisin,[-1 1],'NumMFs',5,'MFType','gaussmf');

Add five rules.

fisin = addRule(fisin,[1 1 1 1;2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1]);
fisin.Rules

ans = 
  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf1 (1)"
    2    "input1==mf2 => output1=mf2 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf4 (1)"
    5    "input1==mf5 => output1=mf5 (1)"

For a faster FIS update, set DisableStructuralChecks to true.

fisin.DisableStructuralChecks = true;

Obtain the rule parameter settings.

[~,~,rule] = getTunableSettings(fisin);
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Make the rule antecedents nontunable. In the rule consequents, do not allow NOT logic (negative MF
indices) or empty variables (zero MF indices).

for i = 1:numel(rule)
    rule(i).Antecedent.Free = false;
    rule(i).Consequent.AllowNot = false;
    rule(i).Consequent.AllowEmpty = false;
end

Generate data for tuning.

x = (0:0.1:2*pi)';
y = sin(x);

To tune the rule parameters, use the customtunefis function defined at the end of this example.
Set the number of iterations to 2, and do not allow invalid parameter values when updating the FIS
using setTunableValues.

numite = 2;
ignoreinvp = false;
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);

Initial cost = 1.170519
Iteration 1: Cost = 0.241121
Iteration 2: Cost = 0.241121

Display the tuned rules.

fisout.Rules

ans = 
  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf4 (1)"
    2    "input1==mf2 => output1=mf5 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf1 (1)"
    5    "input1==mf5 => output1=mf2 (1)"

Allow NOT logic in the rules, and optimize the FIS again.

for i = 1:numel(rule)
    rule(i).Consequent.AllowNot = true;
end
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
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Initial cost = 1.170519
Iteration 1: Cost = 0.357052
Iteration 2: Cost = 0.241121

fisout.Rules

ans = 
  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf4 (1)"
    2    "input1==mf2 => output1=mf5 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf1 (1)"
    5    "input1==mf5 => output1=mf2 (1)"

With NOT logic, there are more combinations of rule parameters, and it generally takes more
iterations to tune a FIS.

Next, reset AllowNot to false and set AllowEmpty to true. In other words, allow the absence of
variables (zero output MF indices) in the consequents. Tune the FIS with the updated rule parameter
settings.

for i = 1:numel(rule)
    rule(i).Consequent.AllowNot = false;
    rule(i).Consequent.AllowEmpty = true;
end

try
    fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
catch me
    disp("Error: "+me.message)
end

Initial cost = 1.170519
Error: Rule consequent must have at least one nonzero membership function index.

The tuning process fails since the FIS only contains one output, which must be nonzero (nonempty) in
the rule consequent. To ignore invalid parameter values, specify IgnoreInvalidParameters with
setTunableValues.

Set ignoreinvp to true, which specifies IgnoreInvalidParameters value in the call to
setTunableValues used in customtunefis.

ignoreinvp = true;
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
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Initial cost = 1.170519
Iteration 1: Cost = 0.241121
Iteration 2: Cost = 0.241121

fisout.Rules

ans = 
  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf4 (1)"
    2    "input1==mf2 => output1=mf5 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf1 (1)"
    5    "input1==mf5 => output1=mf2 (1)"

In this case, the tuning process bypasses the invalid values and uses only valid parameter values for
optimization.

By default, tunefis ignores invalid values when updating fuzzy system parameters. You can change
this behavior by setting tunefisOptions.IgnoreInvalidParameters to false.

Local Functions

function cost = customcostfcn(fis,x,y)

tY = evalfis(fis,x);
sincosx = tY(:,1)+tY(:,2);
sincosexpx = sincosx.*tY(:,3);
actY = [sincosx;sincosexpx];
d = y(:)-actY;
cost = sqrt(mean(d.*d));

end

function fis = customtunefis(fis,rule,x,y,n,ignore)

% Show initial cost.
cost = findcost(fis,x,y);
fprintf('Initial cost = %f\n',cost);

% Optimize rule parameters.
numMFs = numel(fis.Outputs.MembershipFunctions);
for ite = 1:n
    for i = 1:numel(rule)
        % Get consequent value.
        pval = getTunableValues(fis,rule(i));
        % Loop through output MF indices to minimize the cost.
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        % Use output indices according to AllowNot and AllowEmpty.
        allowNot = rule(i).Consequent.AllowNot;
        allowEmpty = rule(i).Consequent.AllowEmpty;
        if allowNot && allowEmpty
            mfID = -numMFs:numMFs;
        elseif allowNot && ~allowEmpty
            mfID = [-numMFs:-1 1:numMFs];
        elseif ~allowNot && allowEmpty
            mfID = 0:numMFs;
        else
            mfID = 1:numMFs;
        end
        cost = 1000;
        minCostFIS = fis;
        for j = 1:length(mfID)
            % Update consequent value.
            pval(1) = mfID(j);
            % Set updated consequent value to the FIS.
            fis = setTunableValues(fis,rule(i),pval,'IgnoreInvalidParameters',ignore);
            % Evaluate cost.
            rmse = findcost(fis,x,y);
            % Update FIS with the minimum cost.
            if rmse<cost
                cost = rmse;
                minCostFIS = fis;
            end
        end
        fis = minCostFIS;
    end
    fprintf('Iteration %d: Cost = %f\n',ite,cost);
end

end

function cost = findcost(fis,x,y)

actY = evalfis(fis,x);
d = y - actY;
cost = sqrt(mean(d.*d));

end

See Also
getTunableSettings | tunefis

More About
• “Tune Mamdani Fuzzy Inference System” on page 3-27
• “Tune Fuzzy Trees” on page 3-15
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Tune Mamdani Fuzzy Inference System
This example shows how to tune membership function (MF) and rule parameters of a Mamdani fuzzy
inference system (FIS). This example uses particle swarm and pattern search optimization, which
require Global Optimization Toolbox™ software.

Automobile fuel consumption prediction in miles per gallon (MPG) is a typical nonlinear regression
problem. It uses several automobile profile attributes to predict fuel consumption. The training data
is available in the University of California at Irvine Machine Learning Repository and contains data
collected from automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Prepare Data

Load the data. Each row of the dataset obtained from the repository represents a different automobile
profile.

[data,name] = loadgas;

Remove leading and trailing whitespace from the attribute names.

name = strtrim(string(name));

data contains 7 columns, where the first six columns contain the following input attributes.

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year

The seventh column contains the output attribute, MPG.

Create separate input and output data sets, X and Y, respectively.

X = data(:,1:6);
Y = data(:,7);

Partition the input and output data sets into training data (odd-indexed samples) and validation data
(even-indexed samples).

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set

 Tune Mamdani Fuzzy Inference System

3-27

https://www.ics.uci.edu/~mlearn/MLRepository.html


vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

Extract the range of each data attribute, which you will use for input/output range definition during
FIS construction.

dataRange = [min(data)' max(data)'];

Construct FIS using Data Attribute Ranges

Create a Mamdani FIS for tuning.

fisin = mamfis;

Add input and output variables to the FIS, where each variable represents one of the data attributes.
For each variable, use the corresponding attribute name and range.

To reduce the number of rules, use two MFs for each input variable, which results in 26 = 64 input
MF combinations. Therefore, the FIS uses a maximum of 64 rules corresponding to the input MF
combinations.

To improve data generalization beyond the training data, use 64 MFs for the output variable. Doing
so allows the FIS to use a different output MF for each rule.

Both input and output variables use default triangular MFs, which are uniformly distributed over the
variable ranges.

for i = 1:6
    fisin = addInput(fisin,dataRange(i,:),'Name',name(i),'NumMFs',2);
end
fisin = addOutput(fisin,dataRange(7,:),'Name',name(7),'NumMFs',64);

View the FIS structure. Initially, the FIS has zero rules. The rules of the system are found during the
tuning process.

figure
plotfis(fisin)
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Tune FIS with Training Data

Tuning is performed in two steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input/output MFs and rules.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. In the second step, using the rule base from
the first step as an initial condition provides fast convergence of the parameter tuning process.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object. Since the FIS
allows a large number of output MFs (used in rule consequents), use a global optimization method
(genetic algorithm or particle swarm). Such methods perform better in large parameter tuning
ranges as compared to local optimization methods (pattern search and simulation annealing). For this
example, tune the FIS using the particle swarm optimization method ('particleswarm').

To learn new rules, set the OptimizationType to 'learning'. Restrict the maximum number of
rules to 64. The number of tuned rules can be less than this limit, since the tuning process removes
duplicate rules.

options = tunefisOptions('Method','particleswarm',...
    'OptimizationType','learning', ...
    'NumMaxRules',64);
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If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

Set the maximum number of iterations to 20. To reduce training error in the rule learning process,
you can increase the number of iterations. However, using too many iterations can overtune the FIS
to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 20;

Since particle swarm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Tune the FIS using the specified tuning data and options.

Learning rules using the tunefis function takes approximately 5 minutes. For this example, enable
tuning by setting runtunefis to true. To load pretrained results without running tunefis, you can
set runtunefis to false.

runtunefis = false;

Parameter settings can be empty when learning new rules. For more information, see tunefis.

if runtunefis
    fisout1 = tunefis(fisin,[],trnX,trnY,options); %#ok<UNRCH>
else
    tunedfis = load('tunedfismpgprediction.mat');
    fisout1 = tunedfis.fisout1;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisout1,trnX,trnY));
end

Training RMSE = 4.452 MPG

The Best f(x) column shows the training root-mean-squared-error (RMSE).

View the structure of the tuned FIS, fisout1.

plotfis(fisout1)

3 Fuzzy Inference System Tuning

3-30



The learning process produces a set of new rules for the FIS. For example, view the descriptions of
the first three rules.

[fisout1.Rules(1:3).Description]' 

ans = 3x1 string
    "Cylinder==mf2 & Disp==mf2 & Power==mf2 & Weight==mf2 & Year==mf2 => MPG=mf5 (1)"
    "Cylinder==mf1 & Power==mf2 & Weight==mf2 & Acceler==mf2 & Year==mf1 => MPG=mf63 (1)"
    "Cylinder==mf2 & Disp==mf1 & Acceler==mf2 => MPG=mf28 (1)"

The learned system should have similar RMSE performance for both the training and validation data
sets. To calculate the RMSE for the validation data set, evaluate fisout1 using validation input data
set vldX. To hide run-time warnings during evaluation, set all the warning options to none.

Calculate the RMSE between the generated output data and the validation output data set vldY.

plotActualAndExpectedResultsWithRMSE(fisout1,vldX,vldY)
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Since the training and validation errors are similar, the learned system does not overfit the training
data.

Tune All Parameters

After learning the new rules, tune the input/output MF parameters along with the parameters of the
learned rules. To obtain the tunable parameters of the FIS, use the getTunableSettings function.

[in,out,rule] = getTunableSettings(fisout1);

To tune the existing FIS parameter settings without learning new rules, set the OptimizationType
to 'tuning'.

options.OptimizationType = 'tuning';

Since the FIS already learned rules using the training data, use a local optimization method for fast
convergence of the parameter values. For this example, use the pattern search optimization method
('patternsearch').

options.Method = 'patternsearch';

Tuning the FIS parameters takes more iterations than the previous rule-learning step. Therefore,
increase the maximum number of iterations of the tuning process to 60. As in the first tuning stage,
you can reduce training errors by increasing the number of iterations. However, using too many
iterations can overtune the parameters to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 60;
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To improve pattern search results, set method option UseCompletePoll to true.

options.MethodOptions.UseCompletePoll = true;

Tune the FIS parameters using the specified tunable settings, training data, and tuning options.

Tuning parameter values with tunefis function takes approximately 5 minutes. To load pretrained
results without running tunefis, you can set runtunefis to false.

if runtunefis
    rng('default') %#ok<UNRCH>
    fisout = tunefis(fisout1,[in;out;rule],trnX,trnY,options); 
else
    fisout = tunedfis.fisout;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisout,trnX,trnY));
end

Training RMSE = 2.903 MPG

At the end of the tuning process, some of the tuned MF shapes are different than the original ones.

figure
plotfis(fisout)

Check Performance

Validate the performance of the tuned FIS, fisout, using the validation input data set vldX.
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Compare the expected MPG obtained from the validation output data set vldY and actual MPG
generated using fisout. Compute the RMSE between these results.

plotActualAndExpectedResultsWithRMSE(fisout,vldX,vldY);

Tuning the FIS parameters improves the RMSE compared to the results from the initial learned rule
base. Since the training and validation errors are similar, the parameters values are not overtuned.

Conclusion

You can further improve the training error of the tuned FIS by:

• Increasing number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to
overtuned system parameters with the training data.

• Using global optimization methods, such as ga and particleswarm, in both rule-learning and
parameter-tuning phases. ga and particleswarm perform better for large parameter tuning
ranges since they are global optimizers. On the other hand, patternsearch and
simulannealbnd perform better for small parameter ranges since they are local optimizers. If a
FIS is generated from training data with genfis or a rule base is already added to a FIS using
training data, then patternsearch and simulannealbnd may produce faster convergence as
compared to ga and particleswarm. For more information on these optimization methods and
their options, see ga, particleswarm, patternsearch, and simulannealbnd.

• Changing the FIS properties, such as the type of FIS, number of inputs, number of input/output
MFs, MF types, and number of rules. For fuzzy systems with a large number of inputs, a Sugeno
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FIS generally converges faster than a Mamdani FIS since a Sugeno system has fewer output MF
parameters (if constant MFs are used) and faster defuzzification. Small numbers of MFs and
rules reduce the number of parameters to tune, producing a faster tuning process. Furthermore, a
large number of rules may overfit the training data. In general, for larger fuzzy systems, a FIS tree
can produce similar performance with a smaller number of rules as compared to a single FIS. For
an example, see “Tune FIS Tree for Gas Mileage Prediction” on page 3-37.

• Modifying tunable parameter settings for MFs and rules. For example, you can tune the support of
a triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices by setting the AllowEmpty tunable setting to false, which reduces the
overall number of rules during the learning phase.

Local Functions

function plotActualAndExpectedResultsWithRMSE(fis,x,y)

% Calculate RMSE bewteen actual and expected results
[rmse,actY] = calculateRMSE(fis,x,y);

% Plot results
figure
subplot(2,1,1)
hold on
bar(actY)
bar(y)
bar(min(actY,y),'FaceColor',[0.5 0.5 0.5])
hold off
axis([0 200 0 60])
xlabel("Validation input dataset index"),ylabel("MPG")
legend(["Actual MPG" "Expected MPG" "Minimum of actual and expected values"],...
        'Location','NorthWest')
title("RMSE = " + num2str(rmse) + " MPG")

subplot(2,1,2)
bar(actY-y)
xlabel("Validation input dataset index"),ylabel("Error (MPG)")
title("Difference Between Actual and Expected Values")

end

function [rmse,actY] = calculateRMSE(fis,x,y)

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
    evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
        "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE 
del = actY - y;
rmse = sqrt(mean(del.^2));
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end

See Also
genfis | getTunableSettings | tunefis

More About
• “Tune Mamdani Fuzzy Inference System” on page 3-27
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-37
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Tune FIS Tree for Gas Mileage Prediction
This example shows how to tune parameters of a FIS tree, which is a collection of connected fuzzy
inference systems. This example uses particle swarm and pattern search optimization, which require
Global Optimization Toolbox™ software.

Automobile fuel consumption prediction in miles per gallon (MPG) is a typical nonlinear regression
problem. It uses several automobile profile attributes to predict fuel consumption. The training data
is available in the University of California at Irvine Machine Learning Repository and contains data
collected from automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS tree:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Prepare Data

Load the data. Each row of the dataset obtained from the repository represents a different automobile
profile.

data = loadgas;

data contains 7 columns, where the first six columns contain the following input attributes.

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year

The seventh column contains the output attribute, MPG.

Create separate input and output data sets, X and Y, respectively.

X = data(:,1:6);
Y = data(:,7);

Partition the input and output data sets into training data (odd-indexed samples) and validation data
(even-indexed samples).

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set
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Extract the range of each data attribute, which you will use for input/output range definition during
FIS construction.

dataRange = [min(data)' max(data)'];

Construct a FIS Tree

For this example, construct a FIS tree using the following steps:

1 Rank the input attributes based on their correlations with the output attribute.
2 Create multiple FIS objects using the ranked input attributes.
3 Construct a FIS tree from the FIS objects.

Rank Inputs According to Correlation Coefficients

Calculate the correlation coefficients for the training data. In the final row of the correlation matrix,
the first six elements show the correlation coefficients between the six put data attributes and the
output attribute.

c1 = corrcoef(data);
c1(end,:)

ans = 1×7

   -0.7776   -0.8051   -0.7784   -0.8322    0.4233    0.5805    1.0000

The first four input attributes have negative values, and the last two input attributes have positive
values.

Rank the input attributes that have negative correlations in descending order by the absolute value of
their correlation coefficients.

1 Weight
2 Displacement
3 Horsepower
4 Number of cylinders

Rank the input attributes that have positive correlations in descending order by the absolute value of
their correlation coefficients.

1 Model year
2 Acceleration

These rankings show that the weight and model year have the highest negative and positive
correlations with MPG, respectively.

Create Fuzzy Inference Systems

For this example, implement a FIS tree with the following structure.
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The FIS tree uses multiple two-input-one-output FIS objects to reduce the total number of rules used
In the inference process. fis1, fis2, and fis3 directly take the input values and generate
intermediate MPG values, which are further combined using fis4 and fis5.

Input attributes with negative and positive correlation values are paired up to combine both positive
and negative effects on the output for prediction. The inputs are grouped according to their ranks as
follows:

• Weight and model year
• Displacement and acceleration
• Horsepower and number of cylinders

The last group includes only inputs with negative correlation values since there are only two inputs
with positive correlation values.

This example uses Sugeno-type FIS objects for faster evaluation during the tuning process as
compared to Mamdani systems. Each FIS includes two inputs and one output, where each input
contains two default triangular membership functions (MFs), and the output includes 4 default
constant MFs. Specify the input and output ranges using the corresponding data attribute ranges.

The first FIS combines the weight and model year attributes.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,dataRange(4,:),'NumMFs',2,'Name',"weight");
fis1 = addInput(fis1,dataRange(6,:),'NumMFs',2,'Name',"year");
fis1 = addOutput(fis1,dataRange(7,:),'NumMFs',4);

The second FIS combines the displacement and acceleration attributes.

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,dataRange(2,:),'NumMFs',2,'Name',"displacement");
fis2 = addInput(fis2,dataRange(5,:),'NumMFs',2,'Name',"acceleration");
fis2 = addOutput(fis2,dataRange(7,:),'NumMFs',4);

The third FIS combines the horsepower and number of cylinder attributes.

fis3 = sugfis('Name','fis3');
fis3 = addInput(fis3,dataRange(3,:),'NumMFs',2,'Name',"horsepower");
fis3 = addInput(fis3,dataRange(1,:),'NumMFs',2,'Name',"cylinders");
fis3 = addOutput(fis3,dataRange(7,:),'NumMFs',4);

The fourth FIS combines the outputs of the first and second FIS.
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fis4 = sugfis('Name','fis4');
fis4 = addInput(fis4,dataRange(7,:),'NumMFs',2);
fis4 = addInput(fis4,dataRange(7,:),'NumMFs',2);
fis4 = addOutput(fis4,dataRange(7,:),'NumMFs',4);

The final FIS combines the outputs of third and fourth FIS and generates the estimated MPG. This
FIS has the same input and output ranges as the fourth FIS.

fis5 = fis4;
fis5.Name = 'fis5';
fis5.Outputs(1).Name = "mpg";

Construct FIS Tree

Connect the fuzzy systems (fis1, fis2, fis3, fis4, and fis5) according to the FIS tree diagram.

fisTin = fistree([fis1 fis2 fis3 fis4 fis5],[ ...
    "fis1/output1" "fis4/input1"; ...
    "fis2/output1" "fis4/input2"; ...
    "fis3/output1" "fis5/input2"; ...
    "fis4/output1" "fis5/input1"])

fisTin = 
  fistree with properties:

                        FIS: [1x5 sugfis]
                Connections: [4x2 string]
                     Inputs: [6x1 string]
                    Outputs: "fis5/mpg"
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Tune FIS Tree with Training Data

Tuning is performed in two steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input/output MFs and rules.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. In the second step, using the rule base from
the first step as an initial condition provides fast convergence of the parameter tuning process.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object. Global optimization
methods (genetic algorithm or particle swarm) are suitable for initial training when all the
parameters of a fuzzy system are untuned. For this example, tune the FIS tree using the particle
swarm optimization method ('particleswarm').

To learn new rules, set the OptimizationType to 'learning'. Restrict the maximum number of
rules to 4. The number of tuned rules of each FIS can be less than this limit, since the tuning process
removes duplicate rules.
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options = tunefisOptions('Method','particleswarm',...
    'OptimizationType','learning', ...
    'NumMaxRules',4);

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

Set the maximum number of iterations to 50. To reduce training error in the rule learning process,
you can increase the number of iterations. However, using too many iterations can overtune the FIS
tree to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 50;

Since particle swarm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Tune the FIS tree using the specified tuning data and options. Set the input order of the training data
according to the FIS tree connections as follows: weight, year, displacement, acceleration,
horsepower, and cylinders.

inputOrders1 = [4 6 2 5 3 1];
orderedTrnX1 = trnX(:,inputOrders1);

Learning rules with tunefis function takes approximately 4 minutes. For this example, enable
tuning by setting runtunefis to true. To load pretrained results without running tunefis, you can
set runtunefis to false.

runtunefis = false;

Parameter settings can be empty when learning new rules. For more information, see tunefis.

if runtunefis
    fisTout1 = tunefis(fisTin,[],orderedTrnX1,trnY,options); %#ok<UNRCH>
else
    tunedfis = load('tunedfistreempgprediction.mat');
    fisTout1 = tunedfis.fisTout1;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout1,orderedTrnX1,trnY));
end

Training RMSE = 3.399 MPG

The Best f(x) column shows the training root-mean-squared-error (RMSE).

The learning process produces a set of new rules for the FIS tree.

fprintf("Total number of rules = %d\n",numel([fisTout1.FIS.Rules]));

Total number of rules = 17

The learned system should have similar RMSE performance for both the training and validation data
sets. To calculate the RMSE for the validation data set, evaluate fisout1 using validation input data
set vldX. To hide run-time warnings during evaluation, set all the warning options to none.
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Calculate the RMSE between the generated output data and the validation output data set vldY.
Since the training and validation errors are similar, the learned system does not overfit the training
data.

orderedVldX1 = vldX(:,inputOrders1);
plotActualAndExpectedResultsWithRMSE(fisTout1,orderedVldX1,vldY)

Tune All Parameters

After learning the new rules, tune the input/output MF parameters along with the parameters of the
learned rules. To obtain the tunable parameters of the FIS tree, use the getTunableSettings
function.

[in,out,rule] = getTunableSettings(fisTout1);

To tune the existing FIS tree parameter settings without learning new rules, set the
OptimizationType to 'tuning'.

options.OptimizationType = 'tuning';

Since the FIS tree already learned rules using the training data, use a local optimization method for
fast convergence of the parameter values. For this example, use the pattern search optimization
method ('patternsearch').

options.Method = 'patternsearch';

Tuning the FIS tree parameters takes more iterations than the previous rule-learning step. Therefore,
increase the maximum number of iterations of the tuning process to 75. As in the first tuning stage,
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you can reduce training errors by increasing the number of iterations. However, using too many
iterations can overtune the parameters to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 75;

To improve pattern search results, set method option UseCompletePoll to true.

options.MethodOptions.UseCompletePoll = true;

Tune the FIS tree parameters using the specified tunable settings, training data, and tuning options.

Tuning parameter values with tunefis function takes several minutes. To load pretrained results
without running tunefis, you can set runtunefis to false.

rng('default')
if runtunefis
    fisTout2 = tunefis(fisTout1,[in;out;rule],orderedTrnX1,trnY,options); %#ok<UNRCH>
else
    fisTout2 = tunedfis.fisTout2;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout2,orderedTrnX1,trnY));
end

Training RMSE = 3.037 MPG

At the end of the tuning process, the training error reduces compared to the previous step.

Check Performance

Validate the performance of the tuned FIS tree, fisout2, using the validation input data set vldX.

Compare the expected MPG obtained from the validation output data set vldY and actual MPG
generated using fisout2. Compute the RMSE between these results.

plotActualAndExpectedResultsWithRMSE(fisTout2,orderedVldX1,vldY)
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Tuning the FIS tree parameters improves the RMSE compared to the results from the initial learned
rule base. Since the training and validation errors are similar, the parameters values are not
overtuned.

Analyze Intermediate Data

To gain insight into the operation of your fuzzy tree, you can add the outputs of the component fuzzy
systems as outputs of your FIS tree. For this example, to access the intermediate FIS outputs, add
three additional outputs to the tuned FIS tree.

fisTout3 = fisTout2;
fisTout3.Outputs(end+1) = "fis1/output1";
fisTout3.Outputs(end+1) = "fis2/output1";
fisTout3.Outputs(end+1) = "fis3/output1";

To generate the additional outputs, evaluate the augmented FIS tree, fisTout3.

actY = evaluateFIS(fisTout3,orderedVldX1);
figure,plot(actY(:,[2 3 4 1])),xlabel("Input dataset index"),ylabel("MPG"),axis([1 200 0 55])
legend(["Output of fis1" "Output of fis2" "Output of fis3" "Output of fis5"],...
    'Location','NorthEast','NumColumns',2)
title("Intermediate and Final Outputs")
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The final output of the FIS tree (fis5 output) appears to be highly correlated with the outputs of
fis1 and fis3. To validate this assessment, check the correlation coefficients of the FIS outputs.

c2 = corrcoef(actY(:,[2 3 4 1]));
c2(end,:)

ans = 1×4

    0.9541    0.8245   -0.8427    1.0000

The last row of the correlation matrix shows that the outputs of fis1 and fis3 (first and third
column, respectively) have higher correlations with the final output as compared to the output of
fis2 (second column). This result indicates that simplifying the FIS tree by removing fis2 and fis4
and can potentially produce similar training results compared to the original tree structure.

Simplify and Retrain FIS Tree

Remove fis2 and fis4 from the FIS tree and connect the output of fis1 to the first input of fis5.
When you remove a FIS from a FIS tree, any existing connections to that FIS are also removed.
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fisTout3.FIS([2 4]) = [];
fisTout3.Connections(end+1,:) = ["fis1/output1" "fis5/input1"];
fis5.Inputs(1).Name = "fis1out";

To make the number of FIS tree outputs match the number of outputs in the training data, remove
the FIS tree outputs from fis1 and fis3.

fisTout3.Outputs(2:end) = [];

Update the input training data order according to the new FIS tree input configuration.

inputOrders2 = [4 6 3 1];
orderedTrnX2 = trnX(:,inputOrders2);

Since the FIS tree configuration is changed, you must rerun both the learning and tuning steps. In
the learning phase, the existing rule parameters are also tuned to fit the new configuration of the FIS
tree.

options.Method = "particleswarm";
options.OptimizationType = "learning";
options.MethodOptions.MaxIterations = 50;

[~,~,rule] = getTunableSettings(fisTout3);

rng('default')
if runtunefis
    fisTout4 = tunefis(fisTout3,rule,orderedTrnX2,trnY,options); %#ok<UNRCH>
else
    fisTout4 = tunedfis.fisTout4;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout4,orderedTrnX2,trnY));
end

Training RMSE = 3.380 MPG

In the training phase, the parameters of the membership function and rules are tuned.

options.Method = "patternsearch";
options.OptimizationType = "tuning";
options.MethodOptions.MaxIterations = 75;
options.MethodOptions.UseCompletePoll = true;
[in,out,rule] = getTunableSettings(fisTout4);
rng('default')
if runtunefis
    fisTout5 = tunefis(fisTout4,[in;out;rule],orderedTrnX2,trnY,options); %#ok<UNRCH>
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else
    fisTout5 = tunedfis.fisTout5;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout5,orderedTrnX2,trnY));
end

Training RMSE = 3.049 MPG

At the end of the tuning process, the FIS tree contains updated MF and rule parameter values. The
rule base size of the new FIS tree configuration is smaller than the previous configuration.

fprintf("Total number of rules = %d\n",numel([fisTout5.FIS.Rules]));

Total number of rules = 11

Check Performance of the Simplified FIS Tree

Evaluate the updated FIS tree using the four input attributes of the checking dataset.

orderedVldX2 = vldX(:,inputOrders2);
plotActualAndExpectedResultsWithRMSE(fisTout5,orderedVldX2,vldY)

The simplified FIS tree with four input attributes produces better results in terms of RMSE as
compared to the first configuration, which uses six input attributes. Therefore, it shows that a FIS
tree can be represented with fewer number of inputs and rules to generalize the training data.

Conclusion

You can further improve the training error of the tuned FIS tree by:
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• Increasing number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to
overtuned system parameters with the training data.

• Using global optimization methods, such as ga and particleswarm, in both rule-learning and
parameter-tuning phases. ga and particleswarm perform better for large parameter tuning
ranges since they are global optimizers. On the other hand, patternsearch and
simulannealbnd perform better for small parameter ranges since they are local optimizers. If
rules are already added to a FIS tree using training data, then patternsearch and
simulannealbnd may produce faster convergence as compared to ga and particleswarm. For
more information on these optimization methods and their options, see ga, particleswarm,
patternsearch, and simulannealbnd.

• Changing the FIS properties, such as the type of FIS, number of inputs, number of input/output
MFs, MF types, and number of rules. For fuzzy systems with a large number of inputs, a Sugeno
FIS generally converges faster than a Mamdani FIS since a Sugeno system has fewer output MF
parameters (if constant MFs are used) and faster defuzzification. Small numbers of MFs and
rules reduce the number of parameters to tune, producing a faster tuning process. Furthermore, a
large number of rules may overfit the training data.

• Modifying tunable parameter settings for MFs and rules. For example, you can tune the support of
a triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices by setting the AllowEmpty tunable setting to false, which reduces the
overall number of rules during the learning phase.

• Changing FIS tree properties, such as number of fuzzy systems and connections between the
fuzzy systems.

• Using different ranking and grouping of the inputs to the FIS tree.

Local Functions
function plotActualAndExpectedResultsWithRMSE(fis,x,y)

% Calculate RMSE bewteen actual and expected results
[rmse,actY] = calculateRMSE(fis,x,y);

% Plot results
figure
subplot(2,1,1)
hold on
bar(actY)
bar(y)
bar(min(actY,y),'FaceColor',[0.5 0.5 0.5])
hold off
axis([0 200 0 60])
xlabel("Validation input dataset index"),ylabel("MPG")
legend(["Actual MPG" "Expected MPG" "Minimum of actual and expected values"],...
    'Location','NorthWest')
title("RMSE = " + num2str(rmse) + " MPG")

subplot(2,1,2)
bar(actY-y)
xlabel("Validation input dataset index"),ylabel("Error (MPG)")
title("Difference Between Actual and Expected Values")

end
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function [rmse,actY] = calculateRMSE(fis,x,y)

% Evaluate FIS
actY = evaluateFIS(fis,x);

% Calculate RMSE
del = actY - y;
rmse = sqrt(mean(del.^2));

end

function y = evaluateFIS(fis,x)

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
    evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
        "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
y = evalfis(fis,x,evalOptions);

end

See Also
fistree | getTunableSettings | sugfis | tunefis

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Mamdani Fuzzy Inference System” on page 3-27
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FIS Parameter Optimization with K-fold Cross Validation
This example shows parameter optimization of a fuzzy inference system (FIS) using k-fold cross
validation. This example uses genetic algorithm (GA) optimization, which requires Global
Optimization Toolbox™ software.

Data Overfitting in FIS Parameter Tuning

Data overfitting is a common problem in FIS parameter optimization. When overfitting occurs, the
tuned FIS produces optimized results for the training data set but performs poorly for a test data set.
Due to overtuning, the optimized FIS parameter values pick up noise from the training data set and
lose the ability to generalize to new data sets. The difference between the training and test
performance increases with the increased bias of the training data set.

To overcome the data overfitting problem, a tuning process can stop early based on an unbiased
evaluation of the model using a separate validation dataset. Such a validation dataset can also
increase bias if it does not accurately represent the problem space. To overcome bias from the
validation data set, a k-fold cross-validation approach is commonly used. Here, the training data is
randomly shuffled and then divided into k partitions, as shown in the following figure. For each
training-validation iteration, a different partition is used for validation, with the remaining data used
for testing. Therefore, each data partition is used once for validation and k− 1 times for training.

Each training-validation iteration runs for n cycles; however, an iteration can stop early at nk < n and
advance to the next iteration if an increase in the validation cost exceeds a predefined threshold
value. The optimized model at the end of the kth iteration is used as the output of the k-fold cross-
validation process.

This example shows how using k-fold cross validation with the tunefis function prevents data
overfitting compared to parameter tuning that does not use k-fold cross validation.

Tune FIS without K-Fold Validation

This example describes a data overfitting problem for automobile fuel consumption prediction. It uses
several automobile profile attributes to predict fuel consumption. The training data is available in the
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University of California at Irvine Machine Learning Repository and contains data collected from
automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Load the data using the loaddata utility function shown at the end of the example. This function
creates training and test data sets.

[data,varName,trnX,trnY,testX,testY] = loadData;

Create an initial FIS based on the input and output data attributes using the constructFIS utility
function.

fisin = constructFIS(data,varName);

Create an option set for tuning the FIS. The default option set uses GA for optimization.

options = tunefisOptions;

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

To demonstrate the data overfitting problem, this example uses a maximum of 100 generations to
tune the rules.

options.MethodOptions.MaxGenerations = 100;

Tune the FIS using the specified tuning data and options. Tuning rules using the tunefis function
takes several minutes. This example uses a flag, runtunefis, to either run the tunefis function or
load pretrained results. To load the pretrained results, set runtunefis to false.

runtunefis = false;

To demonstrate the data overfitting problem, use the following performance measures:

• Training error — Root-mean-square error (RMSE) between the expected training output and the
actual training output obtained from the tuned FIS.

• Test error — RMSE between the expected test output and the actual test output obtained from the
tuned FIS.

• Function count — The total number of evaluations of the cost function for tuning the FIS.

In this example, use only rule parameter settings for tuning the FIS.

Since GA optimization uses random search, to obtain reproducible results, initialize the random
number generator to its default configuration.
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if runtunefis    
    % Get rule parameter settings.
    [~,~,rule] = getTunableSettings(fisin);
    
    % Set default random number generator.    
    rng('default')    

    % Tune rule parameters.
    [outputFIS,optimData] = tunefis(fisin,rule,trnX,trnY,options);

    % Get the trainig error.
    trnErrNoKFold = optimData.tuningOutputs.fval
    
    % Calculate the test error.
    evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
        "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
    actY = evalfis(outputFIS,testX,evalOptions);
    del = actY - testY;
    testErrNoKFold = sqrt(mean(del.^2))
    
    % Get the function count.
    fcnCountNoKFold = optimData.totalFcnCount
    
    save tuningWithoutKFoldValidation trnErrNoKFold testErrNoKFold fcnCountNoKFold
else
    % Load the pretrained results.
    results = load('tuningWithoutKFoldValidation.mat');
    trnErrNoKFold = results.trnErrNoKFold
    testErrNoKFold = results.testErrNoKFold
    fcnCountNoKFold = results.fcnCountNoKFold
end

trnErrNoKFold = 2.4952

testErrNoKFold = 2.8412

fcnCountNoKFold = 19210

The higher value of the test error as compared to the training error indicates that the trained FIS is
more biased to the training data.

Tune FIS Parameters with K-Fold Validation

You can use k-fold cross validation in FIS parameter optimization by setting options.KFoldValue
to a value greater than or equal to 2. For this example, set the k-fold value to 4.

options.KFoldValue = 4;

To specify a tolerance value for which stop a k-fold tuning process, set the
options.ValidationTolerance property. For this example, set the tolerance value to 0.02. This
tolerance value configures the k-fold tuning process to stop if the current validation cost increases by
more than 2% of the minimum validation cost found up to that point in the tuning process.

options.ValidationTolerance = 0.02;

For a noisy data set, you can compute a moving average of the validation cost by setting the
options.ValidationWindowSize property to a value greater than 1. For this example, set the
validation window size to 2.
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options.ValidationWindowSize = 2;

Restrict the maximum number of generations in each tuning process to 25 so that the total number of
generations in the 4-fold tuning process is the same as the previous case.

options.MethodOptions.MaxGenerations = 25;

Tune the FIS with k-fold validation.

if runtunefis    
    % Set default random number generator.
    rng('default')
    
    % Tune the FIS.
    [outputFIS,optimData] = tunefis(fisin,rule,trnX,trnY,options);
    
    % Get the trainig error.
    trnErrWithKFold = optimData.tuningOutputs(end).fval
    
    % Calculate the test error.
    actY = evalfis(outputFIS,testX,evalOptions);
    del = actY - testY;
    testErrWithKFold = sqrt(mean(del.^2))
    
    % Get the function count.
    fcnCountWithKFold = optimData.totalFcnCount
    
    save tuningWithKFoldValidation trnErrWithKFold testErrWithKFold fcnCountWithKFold
else
    % Load the pretrained results.
    results = load('tuningWithKFoldValidation.mat');
    trnErrWithKFold = results.trnErrWithKFold
    testErrWithKFold = results.testErrWithKFold
    fcnCountWithKFold = results.fcnCountWithKFold
end

trnErrWithKFold = 2.7600

testErrWithKFold = 2.9082

fcnCountWithKFold = 5590

Plot the test-to-training error differences for training both with and without k-fold cases.

figure
cats = categorical({'Without k-fold','With k-fold'});
cats = reordercats(cats,{'Without k-fold','With k-fold'});
data = [trnErrNoKFold testErrNoKFold testErrNoKFold-trnErrNoKFold; ...
    trnErrWithKFold testErrWithKFold testErrWithKFold-trnErrWithKFold];
b = bar(cats,data);
ylabel('Root mean square error (RMSE)')
text(b(3).XEndPoints,b(3).YEndPoints,string(b(3).YData),'HorizontalAlignment','center',...
    'VerticalAlignment','bottom')
legend('Training error','Test error','Test to training error difference', ...
    'Location','northoutside')
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The test error performance is similar in both cases. However, the difference in the training and test
errors with k-fold validation is less than without k-fold validation. Therefore, the k-fold validation
reduces the bias of the training data and produces better generalized FIS parameter values. The total
function count during k-fold validation is less than the count without k-fold validation.

disp(table(fcnCountNoKFold,fcnCountWithKFold, ...
    'VariableNames',["Without k-fold" "With k-fold"], ...
    'RowName',"Function counts"))

                       Without k-fold    With k-fold
                       ______________    ___________

    Function counts        19210            5590    

Therefore, k-fold validation reduces the number of generations in each GA optimization cycle,
reducing FIS parameter overfitting. The overall k-fold validation results can be further improved by
experimenting with different k-fold, tolerance, and window size values.

Conclusion

With k-fold cross validation, you can achieve better FIS parameter generalization with fewer function
counts as compared to a similar tuning process without run-time cross validation.

In general, use the following process for FIS parameter optimization with k-fold validation:

1 Start with a validation tolerance of 0 and a window size of 1, which provide the minimal k-fold
performance.
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2 Increase the k-fold value to achieve your desired performance. In general, use a k-fold value less
than or equal to 10.

3 Increase the tolerance value to achieve your desired performance.
4 Increase the window size to achieve your desired performance.
5 You can repeat steps 3 and 4 in a loop to find optimal validation settings.

Higher values of tolerance, window size, and k-fold value introduce data overfitting in the optimized
FIS parameter values. Therefore, use smaller values to achieve your desired tuning performance.

Local Functions

function [data,varName,trnX,trnY,testX,testY] = loadData

% Load the data. Each row of the dataset obtained from the repository represents 
% a different automobile profile. Data contains 7 columns, where the first six 
% columns contain the following input attributes.
%   - Number of cylinders
%   - Displacement
%   - Horsepower
%   - Weight
%   - Acceleration
%   - Model year
% The seventh column contains the output attribute, MPG.
[data,name] = loadgas;

% Remove leading and trailing whitespace from the attribute names.
varName = strtrim(string(name));

% Create input and output data sets.
n = size(data,2);
x = data(:,1:n-1);
y = data(:,n);

% Create training and test data sets.
trnX = x(1:2:end,:);
trnY = y(1:2:end,:);
testX = x(2:2:end,:);
testY = y(2:2:end,:);

end

function fisin = constructFIS(data,varName)

% Create a Sugeno FIS.
fisin = sugfis;

% Add input and output variables to the FIS, where each variable represents
% one of the data attributes. For each variable, use the corresponding
% attribute name and range. To reduce the number of rules, use two MFs for
% each input variable, which results in 2^6=64 input MF combinations.
% Therefore, the FIS uses a maximum of 64 rules corresponding to the input
% MF combinations. Both input and output variables use default triangular
% MFs, which are uniformly distributed over the variable ranges.
dataRange = [min(data)' max(data)'];
numINputs = size(data,2)-1;
numInputMFs = 2;
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numOutputMFs = numInputMFs^numINputs;
for i = 1:numINputs
    fisin = addInput(fisin,dataRange(i,:),'Name',varName(i),'NumMFs',numInputMFs);
end

% To improve data generalization, use 64 MFs for the output variable.
% Doing so allows the FIS to use a different output MF for each rule.
fisin = addOutput(fisin,dataRange(end,:),'Name',varName(end),'NumMFs',numOutputMFs);
fisin.Rules = repmat(fisrule,[1 numOutputMFs]);

end
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Predict Chaotic Time Series Using Type-2 FIS
This example shows chaotic time series prediction using a tuned type-2 fuzzy inference system (FIS).
This example tunes the FIS using particle swarm optimization, which requires Global Optimization
Toolbox™ software.

Time Series Data

This example simulates times-series data using the following form of the Mackey-Glass (MG)
nonlinear delay differential equation.

ẋ t = 0 . 2x t − τ
1 + x10 t − τ

− 0 . 1x t

Simulate the time series for 1200 samples using the following configuration:

• Sample time ts = 1 sec
• Initial condition x 0 = 1 . 2
• τ = 20
• x t − τ = 0 for t < τ.

ts = 1;
numSamples = 1200;
tau = 20;
x = zeros(1,numSamples+tau+1);
x(tau+1) = 1.2;
for t = 1+tau:numSamples+tau
    x_dot = 0.2*x(t-tau)/(1+(x(t-tau))^10)-0.1*x(t);
    x(t+1) = x(t) + ts*x_dot;
end

Plot the simulated MG time-series data.

figure(1)
plot(x(tau+2:end))
title('Mackey-Glass Chaotic Time Series')
xlabel('Time (sec)')
ylabel('x(t)')
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Generate Training and Validation Data

Time-series prediction uses known time-series values up to time t to predict a future value at time
t + P. The standard method for this type of prediction is to create a mapping from D sample data
points, sampled every Δ units in time (x(t − (D− 1)Δ), …, x(t − Δ), x(t)) to a predicted future value
x = (t + P). For this example, set D = 4 and Δ = P = 1. Hence, for each t, the input and output
training data sets are x t − 3 , x t − 2 , x t − 1 , x t  and x t + 1 , respectively. In other words, use
four successive known time-series values to predict the next value.

Create 1000 input/output data sets from samples x 100 + D− 1  to x 1100 + D− 2 .

D = 4;
inputData = zeros(1000,D);
outputData = zeros(1000,1);
for t = 100+D-1:1100+D-2
    for i = 1:D
        inputData(t-100-D+2,i) = x(t-D+i);
    end
    outputData(t-100-D+2,:) = x(t+1);
end

Use the first 500 data sets as training data (trnX and trnY) and the second 500 sets as validation
data (vldX and vldY).

trnX = inputData(1:500,:);
trnY = outputData(1:500,:);
vldX = inputData(501:end,:);
vldY = outputData(501:end,:);
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Construct FIS

This example uses a type-2 Sugeno FIS. Since a Sugeno FIS has fewer tunable parameters than a
Mamdani FIS, a Sugeno system generally converges faster during optimization.

fisin = sugfistype2;

Add three inputs, each with three default triangular membership functions (MFs). Initially, eliminate
the footprint of uncertainty (FOU) for each input MF by setting each lower MF equal to its
corresponding upper MF. To do so, set the scale and lag values of each lower MF to 1 and 0,
respectively. By eliminating the FOU for all input membership functions, you configure the type-2 FIS
to behave like a type-1 FIS.

numInputs = D;
numInputMFs = 3;
range = [min(x) max(x)];
for i = 1:numInputs
    fisin = addInput(fisin,range,'NumMFs',numInputMFs);
    for j = 1:numInputMFs
        fisin.Inputs(i).MembershipFunctions(j).LowerScale = 1;
        fisin.Inputs(i).MembershipFunctions(j).LowerLag = 0;
    end
end

For prediction, add an output to the FIS. The output contains default constant membership functions.
To provide maximum resolution for the input-output mapping, set the number of output MFs equal to
the number of input MF combinations.

numOutputMFs = numInputMFs^numInputs;
fisin = addOutput(fisin,range,'NumMFs',numOutputMFs);

View the FIS structure. Initially, the FIS has zero rules. The rules of the system are found during the
tuning process.

plotfis(fisin)
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Tune FIS with Training Data

To tune the FIS, you use the following three steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the output MF parameters and the upper MF parameters of the inputs while keeping the

rule and lower MF parameters constant.
3 Tune the lower MF parameters of the inputs while keeping the rule, output MF, and upper MF

parameters constant.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. After the second step, the system is a trained
type-1 FIS. The third step produces a tuned type-2 FIS.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object.

options = tunefisOptions;

Since the FIS does not contain any pretuned fuzzy rules, use a global optimization method (genetic
algorithm or particle swarm) to learn the rules. Global optimization methods perform better in large
parameter tuning ranges as compared to local optimization methods (pattern search and simulated
annealing). For this example, tune the FIS using particle swarm optimization ('particleswarm').

options.Method = 'particleswarm';
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To learn new rules, set the OptimizationType to 'learning'.

options.OptimizationType = 'learning';

Restrict the maximum number of rules to the number of input MF combinations. The number of tuned
rules can be less than this limit, since the tuning process removes duplicate rules.

options.NumMaxRules = numInputMFs^numInputs;

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting UseParallel to true. If you do not have Parallel Computing Toolbox software, set
UseParallel to false.

options.UseParallel = false;

Set the maximum number of iterations to 10. Increasing the number of iterations can reduce training
error. However, the larger number of iterations increases the duration of the tuning process and can
overtune the rule parameters to the training data.

options.MethodOptions.MaxIterations = 10;

Since particle swarm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Tuning a FIS using the tunefis function takes several minutes. For this example, enable tuning by
setting runtunefis to true. To load pretrained results without running tunefis, you can set
runtunefis to false.

runtunefis = false;

Tune the FIS using the specified training data and options.

if runtunefis
    fisout1 = tunefis(fisin,[],trnX,trnY,options);
else
    tunedfis = load('tunedfischaotictimeseriestype2.mat');
    fisout1 = tunedfis.fisout1;
end

View the structure of the trained FIS, which contains the new learned rules.

plotfis(fisout1)
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Check the individual input-output relationships tuned by the learned rulebase. For example, the
following figure shows the relationship between the second input and the output.

gensurf(fisout1,gensurfOptions('InputIndex',2))
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Evaluate the tuned FIS using the input validation data. Plot the actual generated output with the
expected validation output, and compute the root-mean-square-error (RMSE).

plotActualAndExpectedResultsWithRMSE(fisout1,vldX,vldY)
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Tune Upper Membership Function Parameters

Tune the upper membership function parameters. A type-2 Sugeno FIS supports only crisp output
functions. Therefore, this step tunes input upper MFs and crisp output functions.

Obtain the input and output parameter settings using getTunableSettings. Since the FIS uses
triangular input MFs, you can tune the input MFs using asymmetric lag values.

[in,out] = getTunableSettings(fisout1,'AsymmetricLag',true);

Disable the tuning of lower MF parameters.

for i = 1:length(in)
    for j = 1:length(in(i).MembershipFunctions)
        in(i).MembershipFunctions(j).LowerScale.Free = false;
        in(i).MembershipFunctions(j).LowerLag.Free = false;
    end
end

To optimize the existing tunable MF parameters while keeping the rulebase constant, set
OptimizationType to 'tuning'.

options.OptimizationType = 'tuning';

Tune the FIS using the specified tuning data and options. To load pretrained results without running
tunefis, you can set runtunefis to false.

rng('default')
if runtunefis
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    fisout2 = tunefis(fisout1,[in;out],trnX,trnY,options);
else
    tunedfis = load('tunedfischaotictimeseriestype2.mat');
    fisout2 = tunedfis.fisout2;
end

View the structure of the trained FIS, which now contains tuned upper MF parameters.

plotfis(fisout2)

Evaluate the tuned FIS using the validation data, compute the RMSE, and plot the actual generated
output with the expected validation output.

plotActualAndExpectedResultsWithRMSE(fisout2,vldX,vldY)
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Tuning the upper MF parameters improves the performance of the FIS. This result is equivalent to
tuning a type-1 FIS.

Tune Lower Membership Function Parameters

Tune only the input lower MF parameters. To do so, set the lower scale and lag values tunable, and
disable tuning of the upper MF parameters.

for i = 1:length(in)
    for j = 1:length(in(i).MembershipFunctions)
        in(i).MembershipFunctions(j).UpperParameters.Free = false;
        in(i).MembershipFunctions(j).LowerScale.Free = true;
        in(i).MembershipFunctions(j).LowerLag.Free = true;
    end
end

Tune the FIS using the specified tuning data and options. To load pretrained results without running
tunefis, you can set runtunefis to false.

rng('default')
if runtunefis
    fisout3 = tunefis(fisout2,in,trnX,trnY,options);
else
    tunedfis = load('tunedfischaotictimeseriestype2.mat');
    fisout3 = tunedfis.fisout3;
end

View structure of the trained FIS, which now contains tuned lower MF parameters.
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plotfis(fisout3)

Evaluate the tuned FIS using the validation data, compute the RMSE, and plot the actual generated
output with the expected validation output.

plotActualAndExpectedResultsWithRMSE(fisout3,vldX,vldY)
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Tuning both the upper and lower MF values improves the FIS performance. The RMSE improves
when the trained FIS includes both tuned upper and lower parameter values.

Conclusion

Type-2 MFs provides additional tunable parameters as compared to type-1 MFs. Therefore, with
adequate training data, a tuned type-2 FIS can fit the training data better than a tuned type-1 FIS.

Overall, you can produce different tuning results by modifying any of the following FIS properties or
tuning options:

• Number of inputs
• Number of MFs
• Type of MFs
• Optimization method
• Number of tuning iterations

Local Functions

function [rmse,actY] = calculateRMSE(fis,x,y)

% Specify options for FIS evaluation
evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
        "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
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% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE
del = actY - y;
rmse = sqrt(mean(del.^2));

end

function plotActualAndExpectedResultsWithRMSE(fis,vldX,vldY)
[rmse,actY] = calculateRMSE(fis,vldX,vldY);

figure
plot([actY vldY])
axis([0 length(vldY) min(vldY)-0.01 max(vldY)+0.13])
xlabel('sample index')
ylabel('signal value')
title(['RMSE = ' num2str(rmse)])
legend(["Actual output" "Expected output"],'Location',"northeast")
end

See Also
sugfistype2 | tunefis

More About
• “Type-2 Fuzzy Inference Systems” on page 2-7
• “Tuning Fuzzy Inference Systems” on page 3-2
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Tune Fuzzy Robot Obstacle Avoidance System Using Custom
Cost Function

This example shows how to tune a fuzzy inference system (FIS) using a custom cost function. The
example requires Global Optimization Toolbox™ software.

Problem Description

In this example, you use a custom cost function to learn robot navigation in a simulation environment.
The goal of the navigation task is to reach a specified target while avoiding obstacles. The direction to
the target is represented as a unit force vector (Ft) directed from the robot to a target location. The

obstacle avoidance direction is represented by a unit force vector (Fo) directed towards the robot
from the closest obstacle location.

The robot, target, and obstacle are shown as circles with 0.5 m radius in the 25 m x 25 m simulation
environment. The navigation task is to combine the force vectors such that the direction θ of the
resultant force vector F provides a collision-free direction for the robot.

F = wFo + 1−w Ft, where 0 ≤ w ≤ 1

θ = ∠F

This example assumes a robot with differential kinematics for the simulation. In other words, the
robot can rotate on its center without any constraints. However, to avoid sharp turns, the change per
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time step in the robot direction is limited to − π
4 , π

4 . Therefore, if the current robot heading direction
is θr k , the next heading direction is calculated as:

θr k + 1 = θr k + min max θ− θr k , π
4 , − π

4 .

The weight w of the force vector Fo is calculated using function fw:

w = fw α, θt, o

where

• α =
do
dt

 is the ratio of the robot-to-obstacle distance (do) and the robot-to-target-distance (dt)

• θt, o is the absolute difference between the target and obstacle directions with respect to the robot

To achieve the navigation task, the function fw must generate high w values, that is, focus on
avoiding the obstacle when:

• Both the target and obstacle directions from the robot are similar (θt, o is low)
• The obstacle is closer to the robot than the target (α is low).

Otherwise, fw must generate low w values, that is, focus on reaching the target.

The goal of this example is to design a FIS that learns fuzzy rules and optimizes the FIS parameters
to model the function fw for collision-free robot navigation in the simulation environment.

Assumptions

The following assumptions apply for the robot simulation:

• The robot can perfectly localize in the simulation environment; that is, the robot knows its current
position in the simulation environment.

• The robot is equipped with perfect sensors to identify the obstacle and determine its location.
• The robot has no dynamic constraints; that is, the robot can rotate and move as commanded

without any mechanical constraints. To avoid sharp turns, a soft constraint is imposed on rotation,
which limits the change per time step in the robot heading to − π

4 , π
4 .

• The robot runs with a fixed speed. You can include additional fuzzy systems to control the robot
speed. For simplicity, this example uses a fixed speed for the robot.

Construct Fuzzy System

To model function fw, construct a FIS as shown in the following figure. For this example, use a
Mamdani FIS.
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fisin = mamfis;

Add the following two inputs as shown in the previous figure.

• α — Ratio of distances, robot-to-obstacle / robot-to-target
• θt, o — Difference between target and obstacle directions

Set the range of the first input to [0,2], which indicates that α contributes to obstacle avoidance
when the obstacle distance is less than or equal to twice the target distance.

Set the range of the second input to [0,pi/2], which indicates that θt, o contributes to obstacle
avoidance when the difference between the target and obstacle directions is less than or equal to
pi/2.

fisin = addInput(fisin,[0 2],'Name','alpha');
fisin = addInput(fisin,[0 pi/2],'Name','theta_t_o');

To minimize the number of rules, which corresponds to the number of combinations of input
membership functions, add two membership functions (MFs) to each input. To generate similar
membership values beyond the input ranges, use zmf (Z-shaped curve membership function) and smf
(S-shaped curve membership function) MFs. The tuning process optimizes the input MF parameter
values.

Add membership functions to the first input.

fisin = addMF(fisin,'alpha','zmf',[0 2],'Name','low');
fisin = addMF(fisin,'alpha','smf',[0 2],'Name','high');

Add membership functions to the second input.

fisin = addMF(fisin,'theta_t_o','zmf',[0 pi/2],'Name','low');
fisin = addMF(fisin,'theta_t_o','smf',[0 pi/2],'Name','high');

Add an output to the FIS or the obstacle force vector weight, restricting the weight values to the
range [0,1].

fisin = addOutput(fisin,[0 1],'Name','w');

Add two MFs to the output. You can add more MFs to the output for finer granularity of output
values. However, doing so increases the number of tuning parameters. The output MFs also use zmf
and smf to generate similar membership values beyond the input ranges. The tuning process
optimizes the output MF parameter values.

fisin = addMF(fisin,'w','zmf',[0 1],'Name','low');
fisin = addMF(fisin,'w','smf',[0 1],'Name','high');

View the FIS structure. Initially, the FIS has zero rules. The tuning process finds rules for the fuzzy
system.

figure
plotfis(fisin)
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Learn Rules and Optimize FIS Parameters

Since you do not have training data for this example, you simulate the robot navigation using a
custom cost function. The tuning process uses this custom cost function when optimizing the FIS
parameters.

For parameter optimization, obtain the parameter settings from the FIS.

[in,out] = getTunableSettings(fisin);

Next, create tuning options with OptimizationType set to learning. This example uses the
genetic algorithm (ga) optimization method for the tuning process. To improve the speed of the
tuning process, set the UseParallel option to true, which requires Parallel Computing Toolbox™
software. If you do not have Parallel Computing Toolbox software, set UseParallel to false.

options = tunefisOptions('Method','ga','OptimizationType','learning');

Set the population size of the genetic algorithm to 200. The larger population size increases the
probability of generating a better solution in fewer generations.

options.MethodOptions.PopulationSize = 200;

Set the maximum number of generations to 25. To tune the parameters further, you can set a higher
number of generations. However, doing so increases the duration of the tuning process and can
overtune the parameter values.

options.MethodOptions.MaxGenerations = 25;
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Set the locations of the obstacle, target, and robot for the training environments. Set the initial
heading of the robot to pi/2 for the training environment. To learn navigation both with and without
obstacle avoidance on the way to the target location, use two training tasks with different obstacle
locations.

trnObstacle = [3 12;13 18];
trnTarget = [13 22;13 22];
trnRobot = [13 2 pi/2;13 2 pi/2;];

showSimulationEnvironmentsForTraining(trnObstacle,trnTarget,trnRobot)

Specify the custom cost function using a function handle.

costFunction = @(fis)navigationCostFcn(fis,trnObstacle,trnTarget,trnRobot);

In the cost function, the robot navigation is simulated in the training environments using each FIS
from the population. Each navigation task is run for 100 iterations, where each iteration is equivalent
to a decision cycle of length 1 s. The robot uses a fixed speed of 0.5 m/s throughout the navigation
task. For more simulation details, see the getNavigationResults function.

function cost = navigationCostFcn(fis,obstacle,target,robot)

cost = 0;

for i = 1:size(obstacle,1)

results = getNavigationResults(fis,obstacle(i,:),target(i,:),robot(i,:));

cost = cost + getNavigationCost(results);

end

end

The cost of each navigation task is the total distance traveled by the robot. If the robot does not reach
the target or collides with the obstacle, a high cost value (200) is assigned for the simulation.

function cost = getNavigationCost(results)

if results.notSafe || ~results.reachedTarget
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cost = 200;

else

cost = results.travelledDistance;

end

end

Since genetic algorithm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Learning rules using the tunefis function takes approximately 10 minutes. For this example, enable
tuning by setting runtunefis to true. To load pretrained results without running tunefis, you can
set runtunefis to false.

runtunefis = false;

Tune the FIS using the specified training environments and tuning options.

if runtunefis
    fisout = tunefis(fisin,[in;out],costFunction,options); %#ok<UNRCH>
else
   tunedfis = load('tunedfisnavigation.mat'); 
   fisout = tunedfis.fisout;
end

The tuned FIS produces the following robot trajectories in the simulation environments.

showNavigationTrajectories(fisout,trnObstacle,trnTarget,trnRobot)

In the first case, the robot reaches the target with minimum distance since the obstacle is not on the
path to the target. In the second case, the robot successfully avoids the obstacle and reaches the
target.

View the structure of the tuned FIS, fisout.
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figure
plotfis(fisout)

The tuning process produces a set of new rules for the FIS.

fisout.Rules

ans = 
  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                         Description                 
         ____________________________________________

    1    "alpha==low & theta_t_o==high => w=low (1)" 
    2    "alpha==low & theta_t_o==low => w=high (1)" 
    3    "theta_t_o==high => w=low (1)"              
    4    "alpha==high & theta_t_o==high => w=low (1)"
    5    "alpha==low => w=low (1)"                   

The rules are described as follows with respect to the expected behaviors of fw:
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• Rule 1 is consistent with the expected behavior of fw. When the obstacle is not located in front of
the robot on the way to the target (θt, o is high) and the obstacle is close (α is low), this rule
produces low weight values.

• Rule 4 is also consistent with the expected behavior of fw. When the obstacle is not located in
front of the robot on the way to the target (θt, o is high) and the obstacle is farther away (α is
high), this rule produces low weight values.

• Rule 3 generates low weight values when the obstacle is not located in front of the robot (θt, o is
high), irrespective of the obstacle distance. This rule covers the conditions for both rule 1 and rule
4. Therefore, rules 1 and 4 are redundant and can be removed.

• Rule 2 is also consistent with the expected behavior of fw. When the obstacle is close to the robot
(α is low) and is located in front of the robot on the way to the target (θt, o is low), this rule
produces high weight values for the obstacle avoidance task.

• Rule 5 generates low weight values when the obstacle distance is low. This rule contradicts rule 2
when θt, o is low. In this case, the output of rule 5 does not contribute to the final output due to the
high output values of rule 2. Therefore, rule 5 can also be removed.

Remove the redundant rules.

fisoutpruned = fisout;
fisoutpruned.Rules([1 4 5]) = [];
fisoutpruned.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                         Description                
         ___________________________________________

    1    "alpha==low & theta_t_o==low => w=high (1)"
    2    "theta_t_o==high => w=low (1)"             

fisout and fisoutpruned generate similar control surfaces. Therefore, only two rules are
necessary for obstacle avoidance in the simulation environment.

figure
subplot(1,2,1)
gensurf(fisout)
title('Output surface of fisout')
subplot(1,2,2)
gensurf(fisoutpruned)
title('Output surface of fisoutpruned')
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Check Performance

Validate the performance of the tuned FIS with different positions of the obstacle, robot, and target.
In the following validation cases, the robot successfully avoids the obstacle to reach the target
position using the tuned FIS.

vldObstacle = [13 5;10 10;8 8];
vldRobot = [5 12 0;5 20 -pi/2;19 19 -pi];
vldTarget = [23 12;15 4;5 5];

showNavigationTrajectories(fisoutpruned,vldObstacle,vldTarget,vldRobot)
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Conclusion

This example uses a custom cost function that simulates robot navigation in different training
environments to learn fuzzy rules and optimize the FIS parameter values for collision-free navigation.
You can Include more training environments to learn obstacle avoidance in other scenarios, for
example narrow corridor and U-shape obstacles. In these scenarios, the robot may need additional
navigation subtasks, such as wall following and subtarget (intermediate landmark) reaching, for
successful collision-free navigation to the target. Complex environments also require additional terms
in the cost calculation for safe navigation. For example, in a narrow corridor the robot should stay in
the middle; that is, the distances to the obstacles on the left and right should be the same.

Using a custom cost function with tunefis provides the flexibility of simulating a custom system
with custom cost calculation. However, the tradeoff is a lengthy tuning process due to the number of
simulations required (for each set of optimized parameter values). Therefore, if possible, to expedite
the tuning process, use training data. For instance, the tuning process in this example would run
faster if input/output decision data of a human operator was available for tuning the FIS.

Local Functions
function showSimulationEnvironment(obstacle,target,robot,navigationResults)

% Show the robot trajectory in the simulation environment.

% Radius of the robot, target, and obstacle.
radius = 1; % 1m

% Use 25mx25m simulation environment.
axis([0 25 0 25]);

% Set equal aspect ratio.
pbaspect([1 1 1])

% Temporary plots to enable legends.
hold on
plot(robot(1),robot(2)+radius,'ob','LineWidth',radius*1,'MarkerFaceColor','b')
plot(robot(1),robot(2)+radius,'or','LineWidth',radius*1,'MarkerFaceColor','r')
plot(robot(1),robot(2)+radius,'og','LineWidth',radius*1,'MarkerFaceColor','g')
hold off

% Draw obstacle.
rectangle('Position',[obstacle(1)-0.5*radius obstacle(2)+0.5*radius radius radius],'Curvature',[1 1], ...
    'FaceColor','b','EdgeColor','b')

% Draw target.
rectangle('Position',[target(1)-0.5*radius target(2)+0.5*radius radius radius],'Curvature',[1 1], ...
    'FaceColor','r','EdgeColor','r')

% Draw robot.
rectangle('Position',[robot(1)-0.5*radius robot(2)+0.5*radius radius radius],'Curvature',[1 1], ...
    'FaceColor','g','EdgeColor','g')

% Add labels, title, and legends.
xlabel('x (m)'),ylabel('y (m)')
title('Simulation Environment for Robot Navigation')
legend(["Obstacle" "Target" "Robot"])

% Plot the robot trajectory if specified.
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if nargin == 4
    x = navigationResults.x;
    y = navigationResults.y;
    for i = 1:numel(x)
        rectangle('Position',[x(i)-0.5*radius y(i)+0.5*radius radius radius], ...
            'Curvature',[1 1],'FaceColor','g','EdgeColor','g')
    end
end

end

function showSimulationEnvironmentsForTraining(obstacle,target,robot)

% Show simulation environments for training.
drawEnvironmentAndShowTrajectory(obstacle,target,robot,'Training Task')

end

function showNavigationTrajectories(fis,obstacle,target,robot)

% Show robot trajectories in the simulation environments.
drawEnvironmentAndShowTrajectory(obstacle,target,robot,'Navigation Task',fis)

end

function drawEnvironmentAndShowTrajectory(obstacle,target,robot,plotTitle,varargin)

% Expand figure horizontally to tile the simulation environments.
h = figure;
h.Position = [h.Position(1:2) 3*h.Position(3) h.Position(4)];
numTasks = size(target,1);

% Draw each simulation environment.
for i = 1:numTasks
    o = obstacle(i,:);
    t = target(i,:);
    r = robot(i,:);
    subplot(1,numTasks,i)
    if ~isempty(varargin)
        results = getNavigationResults(varargin{1},o,t,r);
        showSimulationEnvironment(o,t,r,results)
    else
        showSimulationEnvironment(o,t,r)
    end
    title([plotTitle ': ' num2str(i)])
end

end

See Also
getTunableSettings | mamfis | tunefis

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Mamdani Fuzzy Inference System” on page 3-27
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Classify Pixels Using Fuzzy Systems
This example shows how to classify image pixels using a fuzzy inference system (FIS). This example
requires Image Processing Toolbox™ software.

Pixel classification is an image processing technique that segments an image by classifying each pixel
according to specific pixel attributes. Noise and other sources of uncertainty can complicate pixel
classification. Using a FIS-based method for classification can help address such uncertainty.

This example includes the following stages.

1 Tune a FIS to classify pixels based on color.
2 Tune a FIS to classify pixels based on texture.
3 Combine the tuned FIS objects into a hierarchical fuzzy system for pixel classification.

Load the image data, which contains three visible segments: green grass, white border, and soccer
ball.

exData = load('fuzzpixclass');
cImg = exData.cImg;

figure
imshow(cImg)

This example uses fuzzy systems to segment the image into three categories by classifying each pixel
as belonging to the green grass, white border, or soccer ball.

Segment Image Using Color

The image segments include the following color attributes.
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• Green field: variation of green and dark shadow pixels
• White border: white, light green, and dark shadow pixels
• Soccer ball: white and dark color pixels

Since the number of dark pixels is insignificant compared to the green and white pixels, you can
create one fuzzy classifier to distinguish between green and white pixels. You can train the classifiers
with sample green and white pixels since none of the segments include unique color attribute.

Extract representative subimages from the green field and white border segments as training data.
Each subimage includes variations in pixel color.

grnImg = exData.grnImg;
whtImg = exData.whtImg;

figure
subplot(1,2,1)
imshow(grnImg)
xlabel('Green subimage')
subplot(1,2,2)
imshow(whtImg)
xlabel('White subimage')

Construct FIS

For color segmentation, construct a three-input, one-output Sugeno FIS without rules. For each input
and output variable, include two default membership functions (MFs).
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colorFISIn = sugfis('NumInputs',3,'NumInputMFs',2, ...
    'NumOutputs',1,'NumOutputMFs',2,'AddRules','none');

The input variables correspond to the RGB values for each pixel. The output value is high if the pixel
color is green; otherwise it is low.

Train FIS

Create training data from the representative color subimages. The getColorInputData helper
function, which is shown at the end of the example, creates a three-column array of RGB values for
each pixel in a specified image.

[grnSubRow,grnSubCol,grnSubDepth] = size(grnImg);  % Green subimage size
[whtSubRow,whtSubCol,whtSubDepth] = size(whtImg);  % White subimage size
trnX = [...
    getColorInputData(grnImg); ...
    getColorInputData(whtImg) ...
    ];
trnY = [...
    ones(grnSubRow*grnSubCol,1); ... % Output is high (1) for green pixels
    zeros(whtSubRow*whtSubCol,1) ... % Output is low (1) for white pixels
    ];

Input data trnX has three columns for the RGB pixel values. Output data trnY is a column vector
that contains a 1 for each green pixel and a 0 for each white pixel.

Create an option set for learning rules for colorFISIn. To reduce the duration of the optimization
process, use the minimum values for cross-validation parameters.

options = tunefisOptions('OptimizationType','learning','KFoldValue',2, ...
    'ValidationTolerance',0.0,'ValidationWindowSize',1);

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

To learn rules and find FIS parameter values, this example uses genetic algorithm optimization,
which is a stochastic process. To obtain reproducible results, initialize the random number generator
to its default configuration.

rng('default')

Learn fuzzy rules for colorFISIn using the training data and options. Learning rules using the
tunefis function can take several minutes. For this example, you can enable tuning by setting
runtunefis to true. To load pretrained results without running tunefis, set runtunefis to
false.

runtunefis = false;

To learn new rules without tuning input and output MF parameters, set the parameter settings to [].
For more information, see tunefis.

if runtunefis
    colorFISOut1 = tunefis(colorFISIn,[],trnX,trnY,options); %#ok<UNRCH>
else
    colorFISOut1 = exData.colorFISOut1;
end
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Calculate the root mean squared error (RMSE) for the trained FIS. The calculateRMSE helper
function, which is shown at the end of the example, classifies the training data pixels using the
trained FIS and compares the results to the expected pixel classifications.

fprintf('Training RMSE after learning rules = %.3f MPG\n',...
    calculateRMSE(colorFISOut1,trnX,trnY));

Training RMSE after learning rules = 0.283 MPG

After learning the new rules, tune the input and output MF parameters. To obtain the tunable
parameter settings of the FIS, use the getTunableSettings function.

[in,out] = getTunableSettings(colorFISOut1);

To tune the existing FIS parameter values without learning new rules, set the OptimizationType to
'tuning'.

options.OptimizationType = 'tuning';

Tune the FIS parameters using the specified tunable settings, training data, and tuning options.

if runtunefis
    rng('default')
    colorFISOut = tunefis(colorFISOut1,[in;out],trnX,trnY,options);
    colorFISOut.Name = "colorFISOut";
else
    colorFISOut = exData.colorFISOut;
    
end

Calculate the RMSE for the tuned FIS.

fprintf('Training RMSE after tuning MF parameters = %.3f MPG\n',...
        calculateRMSE(colorFISOut,trnX,trnY));

Training RMSE after tuning MF parameters = 0.228 MPG

Segment Image

Segment the original image using the tuned FIS. To do so, first extract the red, green, and blue pixel
values.

[imgRow,imgCol,imgDepth] = size(cImg);
red = cImg(:,:,1);
green = cImg(:,:,2);
blue = cImg(:,:,3);
colorInput = [red(:) green(:) blue(:)];

Classify each pixel using the tuned FIS.

eoptions = evalfisOptions;
eoptions.EmptyOutputFuzzySetMessage = 'none';
eoptions.NoRuleFiredMessage = 'none';
eoptions.OutOfRangeInputValueMessage = 'none';

y = evalfis(colorFISOut,colorInput,eoptions);

Segment the image using the getSegmentedImage helper function, which is shown at the end of the
example. This function creates a binary mask from the FIS output values.
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greenSegment = getSegmentedImage(reshape(y,[imgRow,imgCol]),cImg);

View the segmented image. Pixels that the FIS classified as white are shown in black. The remaining
pixels are classified as green.

figure
imshow(greenSegment)

White pixels are partially removed from the border and ball segments. The green segment also
incorrectly includes pixels from the ball. Therefore, the classification process requires another pixel
attribute that can identify the difference between the grass field and the ball.

Segment Image Using Texture

To distinguish between the field and the ball, use gray image gradient data to identify textures of the
field and the ball.

Extract a representative subimage for the ball, and convert the green, white, and ball subimages to
grayscale.

ballImg = exData.ballImg;
grayGrnImg = rgb2gray(grnImg);
grayWhtImg = rgb2gray(whtImg);
grayBallImg = rgb2gray(ballImg);

Compute the gradient for each subimage and normalize the gradient magnitude for each pixel using
the normMat helper function.

[gX,gY] = imgradientxy(grayGrnImg);
grnGrsTexture = normMat(imgradient(gX,gY));
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[gX,gY] = imgradientxy(grayWhtImg);
whtGrsTexture = normMat(imgradient(gX,gY));

[gX,gY] = imgradientxy(grayBallImg);
ballTexture = normMat(imgradient(gX,gY));

View the gradients for each subimage.

figure,
subplot(2,3,1)
imshow(grnImg)
subplot(2,3,2)
imshow(whtImg)
subplot(2,3,3)
imshow(ballImg)
subplot(2,3,4)
imshow(grnGrsTexture)
subplot(2,3,5)
imshow(whtGrsTexture)
subplot(2,3,6)
imshow(ballTexture)

Both the green and white grass segments have similar gradient values, which are different than those
of the ball segment. Therefore, use only the green and ball segment gradient data to train a fuzzy
texture classifier.

Construct FIS
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The normalized gradients for the ball and grass field have different patterns. To learn these patterns,
create a three-input, one-output Sugeno FIS without rules. For each input and output variable,
include two default membership functions (MFs).

textureFISIn = sugfis('NumInputs',3,'NumInputMFs',2, ...
    'NumOutputs',1,'NumOutputMFs',2,'AddRules','none');

The input variables specify gradient values for three successive pixels. The output value is high if the
third pixel belongs to the grass field; otherwise, it is low.

Train FIS

Create training data from the gradients of the green and ball regions. The getGradientInputData
helper function, which is shown at the end of the example, creates a three-column array of successive
pixel value combinations.

[grsGradRow,grsGradCol] = size(grnGrsTexture);   % Grass texture size
[ballGradRow,ballGradCol] = size(ballTexture);   % Ball texture size
trnX = [...
    getGradientInputData(grnGrsTexture); ... % [grsGradRow*grsGradCol   3] gradient values of 3 successive pixels
    getGradientInputData(ballTexture) ...    % [ballGradRow*ballGradCol 3] gradient values of 3 successive pixels
    ];
trnY = [...
    ones(grsGradRow*grsGradCol,1); ...   % Output is high (1) for green texture
    zeros(ballGradRow*ballGradCol,1) ... % Output is low (1) for ball texture
    ];

Input data trnX is has three columns for the gradient values of the three successive pixels. Output
data trnY is a column vector that contains a 1 if the third pixel belongs to field texture and a 0
otherwise.

To learn fuzzy rules, set the OptimizationType to 'learning'.

options.OptimizationType = 'learning';

Train textureFISIn to learn rules using the training data.

if runtunefis
    rng('default')
    textureFISOut1 = tunefis(textureFISIn,[],trnX,trnY,options); %#ok<UNRCH>
else
    textureFISOut1 = exData.textureFISOut1;
end
fprintf('Training RMSE after learning rules = %.3f MPG\n',...
    calculateRMSE(textureFISOut1,trnX,trnY));

Training RMSE after learning rules = 0.477 MPG

After learning the new rules, tune the input and output MF parameters. To obtain the tunable
parameters of the FIS, use the getTunableSettings function.

[in,out] = getTunableSettings(textureFISOut1);

To tune the existing FIS parameters without learning new rules, set the OptimizationType to
'tuning'.

options.OptimizationType = 'tuning';
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Tune the FIS parameters using the specified tunable settings, training data, and tuning options.

if runtunefis
    rng('default')
    textureFISOut = tunefis(textureFISOut1,[in;out],trnX,trnY,options);
    textureFISOut.Name = "textureFISOut";
else
    textureFISOut = exData.textureFISOut;
end
fprintf('Training RMSE after tuning MF parameters = %.3f MPG\n',...
    calculateRMSE(textureFISOut,trnX,trnY));

Training RMSE after tuning MF parameters = 0.442 MPG

Segment Image

Segment the original image using the tuned FIS. To do so, first compute the image gradient and
extract the successive pixel combinations.

[gX,gY] = imgradientxy(rgb2gray(cImg));
imgTexture = normMat(imgradient(gX,gY));
gradInput = getGradientInputData(imgTexture);

Classify each pixel using the tuned FIS.

y = evalfis(textureFISOut,gradInput,eoptions);

Segment the image using the getSegmentedImage helper function.

grassField = getSegmentedImage(reshape(y,[imgRow,imgCol]),cImg);

View the segmented image. Pixels that the FIS classified as belonging to the ball are shown in black.
The remaining pixels are classified as field pixels.

figure
imshow(grassField)
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The trained FIS segments the grass field and the ball with few incorrect pixels in the segments.

Segment Image Using Both Color and Texture

To classify pixels based on both color and texture, you can combine colorFISOut and
textureFISOut using a hierarchical fuzzy system, or FIS tree.

To do so, first create a Sugeno FIS with two inputs and three outputs. The first input variable is the
output of colorFISOut and the second input variable is the output of textureFISOut. The output
variables are the degree to which a pixels belongs to each image segment: green field, white border,
and soccer ball.

segFIS = sugfis('Name','segFIS','NumInputs',2,'NumInputMFs',2, ...
    'NumOutputs',3,'NumOutputMFs',2,'AddRules','none');

Name the input variables, output variable, and MFs.

segFIS.Inputs(1).Name = 'color';
segFIS.Inputs(1).MembershipFunctions(1).Name = 'white';
segFIS.Inputs(1).MembershipFunctions(2).Name = 'green';
segFIS.Inputs(2).Name = 'texture';
segFIS.Inputs(2).MembershipFunctions(1).Name = 'ball';
segFIS.Inputs(2).MembershipFunctions(2).Name = 'grass';
segFIS.Outputs(1).Name = 'greenField';
segFIS.Outputs(1).MembershipFunctions(1).Name = 'low';
segFIS.Outputs(1).MembershipFunctions(2).Name = 'high';
segFIS.Outputs(2).Name = 'whiteBorder';
segFIS.Outputs(2).MembershipFunctions(1).Name = 'low';
segFIS.Outputs(2).MembershipFunctions(2).Name = 'high';
segFIS.Outputs(3).Name = 'soccerBall';
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segFIS.Outputs(3).MembershipFunctions(1).Name = 'low';
segFIS.Outputs(3).MembershipFunctions(2).Name = 'high';

Add the following rules to the FIS.

• If the pixel has a smooth ball texture, set the soccer ball output to high.
• If the pixel is white and has a grass texture set the white border output to high.
• If the pixel is green and has a grass texture and is green field output to high.

segFIS = addRule(segFIS,"texture==ball => greenField=low, whiteBorder=low, soccerBall=high");
segFIS = addRule(segFIS,"color==white & texture==grass => greenField=low, whiteBorder=high, soccerBall=low");
segFIS = addRule(segFIS,"color==green & texture==grass => greenField=high, whiteBorder=low, soccerBall=low");

Create a FIS tree by connecting the outputs of colorFISOut and textureFISOut to the inputs of
segFIS.

fis = [colorFISOut textureFISOut segFIS];
con = [...
    "colorFISOut/output1" "segFIS/color"; ...
    "textureFISOut/output1" "segFIS/texture" ...
    ];
fisT = fistree(fis,con);

Classify the image pixels using the FIS tree and segment the image. For each segmented image, the
nonblack pixels are classified as part of the segment.

y = evalfis(fisT,[colorInput gradInput],eoptions);
greenField = getSegmentedImage(reshape(y(:,1),[imgRow,imgCol]),cImg);
whiteBorder = getSegmentedImage(reshape(y(:,2),[imgRow,imgCol]),cImg);
soccerBall = getSegmentedImage(reshape(y(:,3),[imgRow,imgCol]),cImg);

View the green field pixels.

figure
imshow(greenField)
xlabel('Green field')
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View the white border pixels.

figure
imshow(whiteBorder)
xlabel('White border')
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View the soccer ball pixels.

figure
imshow(soccerBall)
xlabel('Soccer ball')
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Conclusion

The image segments contain incorrect classifications. You can remove many of the misclassified pixels
by post-processing the results using noise reduction algorithms, such as morphological operations
(imdilate, imerode, imopen, imclose). For example, use a morphological close operation to
reduce the noise in the green field segmented image.

greenFieldLowNoise = getSegmentedImageClose(reshape(y(:,1),[imgRow,imgCol]),cImg);
figure
imshow(greenFieldLowNoise)
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To improve fuzzy classifier performance, you can:

• Use more training data.
• Learn color patterns of multiple pixels instead of learning individual pixel color.
• Increase the length of the gradient feature vector, in other words, use gradient values of more

than three successive pixels.
• Add more MFs to the FIS for pixel classification.
• Use type-2 FIS.
• Use a validation tolerance, a larger window size, and higher k-fold values for cross validation.
• Tune the parameters of the constructed FIS tree segFIS.

Local Functions

function data = getColorInputData(img)
% Create RGB input data from an image for training.

[row,col,depth] = size(img);
data = zeros(row*col,depth);
id = 0;
for i = 1:row
    for j = 1:col
        id = id + 1;
        for k = 1:depth
            data(id,k) = img(i,j,k);
        end
    end
end
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end

function [rmse,actY] = calculateRMSE(fis,x,y)
% Calculate root mean squared error for FIS output.

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
    evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
        "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE 
del = actY - y;
rmse = sqrt(mean(del.^2));

end

function cImg = getSegmentedImage(y,cImg)
% Segment an image using classifier output by creating a binary image
% using a 0.5 threshold.

id = y >= 0.5;
y(id) = 1;
y(~id) = 0;

cImg(:,:,1) = cImg(:,:,1).*y;
cImg(:,:,2) = cImg(:,:,2).*y;
cImg(:,:,3) = cImg(:,:,3).*y;

end

function y = normMat(x)
% Normalize array elements to the range [0 1].

tmp = x(:);
mn = min(tmp);
mx = max(tmp);
d = (mx-mn);
y = (x-mn);
if d>0
    y = y/d;
end

end

function data = getGradientInputData(x)
% Create gradient input data for training.

x = x(:);
n = 3; % Three successive gradient values.
data = zeros(length(x),n);

% Specify complete input vectors.
for i = n:length(x)
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   data(i,:) = x(i-n+1:i)';
end

% Approximate missing elements in the incomplete input vector.
for i = n-1:-1:1
    right = x(1:i)';
    m = n - i;
    left = repmat(right(1),[1 m]);
    data(i,:) = [left right];
end

end

function cImg = getSegmentedImageClose(y,cImg)
% Segment an image using classifier output by creating a binary image
% using a 0.5 threshold.

id = y >= 0.5;
y(id) = 1;
y(~id) = 0;

se = strel('disk',1);
y = imclose(y,se);

cImg(:,:,1) = cImg(:,:,1).*y;
cImg(:,:,2) = cImg(:,:,2).*y;
cImg(:,:,3) = cImg(:,:,3).*y;

end

See Also
fistree | getTunableSettings | sugfis | tunefis

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Fuzzy Trees” on page 2-52

3 Fuzzy Inference System Tuning

3-96



Autonomous Parking Using Fuzzy Inference System
This example shows how to tune a fuzzy inference system (FIS) for an autonomous parking
application with nonholonomic constraints. This example requires Global Optimization Toolbox™
software.

Autonomous parking is an essential capability of intelligent vehicles (autonomous cars).
Nonholonomic kinematics impose additional constraints on autonomous parking, where a car cannot
move sideways and instead using a curving motion.

Kinematic Model

The following figure shows the kinematics of a nonholonomic car with a standard Ackermann steering
mechanism.

The kinematic model has the following parameters.

• θ is the current orientation of the car with respect to a global reference frame.
• ϕ is the steering angle with respect to the car orientation.
• F is the front wheel center, (xf , yf ).
• R is the rear wheel center, (xr, yr).
• RF  is the length of the wheelbase.
• O is the center of curvature for the car.
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• OR  is the radius of curvature for the car.

In this model, the rear-wheel orientation is fixed and parallel to the car body, that is the rear wheels
have the same orientation as the car, θ. The front wheels are parallel to each other and rotate with
the steering angle, ϕ. The steering angle is constrained to an angle of ±Φ. For this example, Φ = 30
deg.

The front and rear wheel centers have the following relationship.

xf − xr = RF * cos θ

yf − yr = RF * sin θ

The kinematic equations for the front wheel center velocity and car orientation velocity are as
follows, where s is the speed of the car.

ẋf = s * cos θ + ϕ

ẏf = s * sin θ + ϕ

θ̇ = s * sin ϕ
RF

Autonomous Parking

The minimum radius of curvature (OR) for a car depends on the wheelbase length (RF). This
minimum radius constrains the motion of the car during parking maneuvers.

When a human driver parks, they often fail to maintain the required car speed and orientation when
approaching an empty parking space. To successfully park without a collision, they must compensate
by switching between forward and backward motion while adjusting the speed and steering angle of
the car.

Human drivers do not consciously perform geometric computations based on the kinematic model of
their car. Instead, based on their own trial-and-error experience, they use natural rules and reasoning
to understand the constraints of their car within a parking situation. You can use fuzzy systems to
model such rule-based reasoning.

This example uses the following environment for simulating head-on parking of a nonholonomic car.
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Here:

• The simulation environment is a 45 × 15f t parking lot.
• The hatched area shows occupied parking spots.
• The empty parking spot is of size 6 × 7f t.
• The car is of size 5 × 3f t and the length of the wheelbase ( RF ) is 3f t, providing 1f t offset from

the wheelbase to both the front and rear of the car.

This example assumes the following.

• The car is equipped with an intelligent system that can detect an empty parking spot and then
stop the car near the starting edge of the parking spot.

• The autonomous parking system takes control of the car after it stops. Ideally, at the starting
position, the car is almost vertically centered in the road and parallel to the road (θ = 0 deg or
θ = 180 deg).

• Due to the dynamic nature of a parking lot,the kinematic motion constraints, and physical car
attributes, a car does stop at the exact desired position and orientation. Therefore, the parking
system assumes that the car stops somewhere in front of the empty parking spot with θ ≈ 0 or
θ ≈ 180 deg and unequal space to the sides of the car.

• For collision-free parking, the car is equipped with range sensors to provide range data for the
front, rear, left, and right sides of the car. The following figure shows an example of the range data
obtained from the sensors in the simulation environment.
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• The maximum sensor range is assumed to be 50f t, which covers the entire simulation
environment.

Human Reasoning for Car Parking

Generally, as shown below, human drivers maintain the appropriate speed and steering angle when
approaching an empty head-on parking spot. In this case, they can park without any forward and
backward oscillating motions.

However, sometimes drivers fail to maintain the desired speed and steering angle for oscillation-free
parking. As shown in the following example, the drivers must then compensate using back-and-forth
motions.
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In this case, the driver:

1 Turns right and moves forward
2 Fails to enter the parking spot since the front of the car approaches the car in the occupied

space.
3 Turns left and backs up to make enough room to enter the parking spot
4 Enters the parking spot with forward motion while adjusting the car orientation to align with the

parking direction
5 Stops when the front of the car is a safe minimal distance from the end of the parking spot and

the vehicle is aligned with the parking spot (90 deg orientation within the simulation
environment)

The following section uses these motions patterns to construct fuzzy systems for autonomous parking.

Generate Training Data

For tuning the fuzzy systems, this example artificially generates training data using the kinematic
model of the car and the motion patterns described in the previous section. The data generation
process uses the following discrete form of the kinematic model, where Δt is 0.1.

xf k + 1 = xf k + Δt . s k + 1 . cos θ k + ϕ k + 1

yf k + 1 = yf k + Δt . s k + 1 . sin θ k + ϕ k + 1

θ k + 1 = s k + 1 . sinϕ k + 1
RF

xr k + 1 = xf k + 1 − RF . cosθ k + 1

yr k + 1 = yf k + 1 − RF . sinθ k + 1

The steering angle (ϕ) and speed (s) values are generated based on the typical human driver patterns
discussed previously. The steering angle and speed are constrained to the following limits.

−Φ ≤ ϕ ≤ Φ,
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Φ = 30∘

−3 . S ≤ s ≤ S,
S = 5
ft

sec

In order to make space for safe turning, the backward motion uses higher speed when the car gets
closer to the occupied space. Alternatively, the car can use the same speed, however, for longer
period in case of backward motion to make adequate space for safe turning.

Load the training data structure.

trainingData = load('trainingData');

Each training data point includes five inputs.

• Angular deviation (Δθ) between the car orientation and the parking spot orientation
• Minimum distances to the front (df ront), left (dlef t), rear (drear), and right (dright) of the car

Each training data point includes two outputs.

• Steering angle (ϕ)
• Speed (s) of the car

Since the angular deviation and distance values have different units and scales, the training data is
normalized to the range [0 1]. Doing so removes any sensitivity of the cost function to errors in the
larger magnitude inputs. The training data structure contains both the original input and output
values (x and y) and their normalized values (xn and yn).

During data generation, a successful parking condition is achieved when the car reaches a minimum
safe distance from the end of the parking spot and is aligned with the parking direction.

Construct and Train Initial Fuzzy Systems

This example uses a FIS tree as the fuzzy parking system. The first stage of the tuning process is to
construct and train the initial FISs that you later assemble into a FIS tree. You then improve
performance by fine tuning tune the parameters of the entire FIS tree.

To construct and tune the initial fuzzy systems, this example uses ANFIS, which provides faster
convergence compared to other tuning methods.

The design of the FIS tree and its component fuzzy systems addresses the following considerations.

• The FIS tree has five inputs and two outputs that match the values in the training data set.
• Since ANFIS supports a single output, separate fuzzy subsystems are constructed for steering

angle (ϕ) and speed (s).
• For better performance, each of these subsystems uses separate FISs for forward and backward

motion.
• The forward and backward motion controllers for each subsystem are combined using an

additional FIS.
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Train the forward motion controller for steering, forwardPhiFIS, using the training input and
output data. To do so, first extract the normalized steering angle training data.

forwardPhi = trainingData.yn(:,1);

Then, since this system is only for forward motion, set the steering angle output values to 0 for
negative speed values.

negSpeedId = trainingData.y(:,2) < 0;
forwardPhi(negSpeedId) = 0;

Create options for ANFIS training.

aoptions = anfisOptions;

Use three MFs for the first input (Δθ) since it has both positive and negative values. Use two MFs for
the distance inputs.

aoptions.InitialFIS = [3 2 2 2 2];

Display only final training results.

aoptions.DisplayANFISInformation = false;
aoptions.DisplayErrorValues = false;
aoptions.DisplayStepSize = false;

Train forwardPhiFIS.
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forwardPhiFIS = anfis([trainingData.xn forwardPhi],aoptions);

Minimal training RMSE = 0.100129

Replace the default FIS name with forwardPhiFIS.

forwardPhiFIS.Name = 'forwardPhiFIS';

In a similar manner, train the forward motion controller for speed, forwardSpeedFIS.

forwardSpeed = trainingData.yn(:,2);
forwardSpeed(negSpeedId) = 0;

forwardSpeedFIS = anfis([trainingData.xn forwardSpeed],aoptions);

Minimal training RMSE = 0.161479

forwardSpeedFIS.Name = 'forwardSpeedFIS';

Next, tune the backward motion controllers for steering angle and speed, backwardPhiFIS and
backwardSpeedFIS, respectively. In this case, set the output values to 0 for positive speed values.

Train backwardPhiFIS.

backwardPhi = trainingData.yn(:,1);
backwardPhi(~negSpeedId) = 0;

backwardPhiFIS = anfis([trainingData.xn backwardPhi],aoptions);

Minimal training RMSE = 0.112362

backwardPhiFIS.Name = 'backwardPhiFIS';

Train backwardSpeedFIS.

backwardSpeed = trainingData.yn(:,2);
backwardSpeed(~negSpeedId) = 0;

backwardSpeedFIS = anfis([trainingData.xn backwardSpeed],aoptions);

Minimal training RMSE = 0.064213

backwardSpeedFIS.Name = 'backwardSpeedFIS';

Next, train phiFIS, which combines the forward and backward steering angle values generated by
forwardPhiFIS and backwardPhiFIS. To generate input training data for phiFIS, evaluate
forwardPhiFIS and backwardPhiFIS using the normalized input training data.

eoptions = evalfisOptions;
eoptions.EmptyOutputFuzzySetMessage ='none';
eoptions.NoRuleFiredMessage = 'none';
eoptions.OutOfRangeInputValueMessage = 'none';

forwardPhi = evalfis(forwardPhiFIS,trainingData.xn,eoptions);
backwardPhi = evalfis(backwardPhiFIS,trainingData.xn,eoptions);

Use five MFs for each input. In this case, you can use higher number of MFs since phiFIS has only
two inputs.

aoptions.InitialFIS = 5;
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Train phiFIS using the generated input data and the normalized output training data.

phiFIS = anfis([forwardPhi backwardPhi trainingData.yn(:,1)],aoptions);

Minimal training RMSE = 0.120349

phiFIS.Name = 'phiFIS';

Similarly, train speedFIS, which combines the forward and backward speed values generated by
forwardSpeedFIS and backwardSpeedFIS. To generate input training data for speedFIS,
evaluate forwardSpeedFIS and backwardSpeedFIS using the normalized input training data.

forwardSpeed = evalfis(forwardSpeedFIS,trainingData.xn,eoptions);
backwardSpeed = evalfis(backwardSpeedFIS,trainingData.xn,eoptions);

speedFIS = anfis([forwardSpeed backwardSpeed trainingData.yn(:,2)],aoptions);

Minimal training RMSE = 0.096904

speedFIS.Name = 'speedFIS';

Construct and Tune FIS Tree

The next stage of the tuning process is to construct and tune and fuzzy tree using the previously
tuned component FISs. To create the FIS tree, first define the connections between the component
FISs according to the overall FIS tree design.

connections = [...
    "forwardPhiFIS/output" "phiFIS/input1"; ...
    "backwardPhiFIS/output" "phiFIS/input2"; ...
    "forwardSpeedFIS/output" "speedFIS/input1"; ...
    "backwardSpeedFIS/output" "speedFIS/input2"; ...
    "forwardPhiFIS/input1" "backwardPhiFIS/input1"; ...
    "forwardPhiFIS/input1" "forwardSpeedFIS/input1"; ...
    "forwardPhiFIS/input1" "backwardSpeedFIS/input1"; ...
    "forwardPhiFIS/input2" "backwardPhiFIS/input2"; ...
    "forwardPhiFIS/input2" "forwardSpeedFIS/input2"; ...
    "forwardPhiFIS/input2" "backwardSpeedFIS/input2"; ...
    "forwardPhiFIS/input3" "backwardPhiFIS/input3"; ...
    "forwardPhiFIS/input3" "forwardSpeedFIS/input3"; ...
    "forwardPhiFIS/input3" "backwardSpeedFIS/input3"; ...
    "forwardPhiFIS/input4" "backwardPhiFIS/input4"; ...
    "forwardPhiFIS/input4" "forwardSpeedFIS/input4"; ...
    "forwardPhiFIS/input4" "backwardSpeedFIS/input4"; ...
    "forwardPhiFIS/input5" "backwardPhiFIS/input5"; ...
    "forwardPhiFIS/input5" "forwardSpeedFIS/input5"; ...
    "forwardPhiFIS/input5" "backwardSpeedFIS/input5"; ...
    ];

Construct the FIS tree.

fuzzySystems = [forwardPhiFIS backwardPhiFIS forwardSpeedFIS backwardSpeedFIS phiFIS speedFIS];
fisT = fistree(fuzzySystems,connections);

Next, fine-tune both MF and rule parameter values of fisT. For better performance, tune the fuzzy
system parameters for individual outputs.

• First, tune FIS parameters for steering angle.

 Autonomous Parking Using Fuzzy Inference System

3-105



• Second, tune FIS parameters for speed.

To tune FIS tree parameters for one output without considering the other output value, you can
temporarily remove the other output from the FIS tree.

To tune the FIS tree for the steering angle output, remove the second output from fisT and get
tunable settings from forwardPhiFIS, backwardPhiFIS, and phiFIS.

fisTin1 = fisT;
fisTin1.Outputs(2) = [];
[in,out,rule] = getTunableSettings(fisTin1,'FIS',...
    ["forwardPhiFIS" "backwardPhiFIS" "phiFIS"]);

Create a tuning option set.

toptions = tunefisOptions;

Use patternsearch method for fine tuning and set the maximum iteration number to 10. If you
have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process by
setting toptions.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

toptions.Method = 'patternsearch';
toptions.MethodOptions.MaxIterations = 10;

To improve pattern search results, set method option UseCompletePoll to true.

toptions.MethodOptions.UseCompletePoll = true;

For reproducibility, set the random number generator seed to default.

rng('default')

Training can be computationally intensive and take several hours to complete. To save time, load a
pretrained FIS tree by setting runtunefis to false. To run the tuning, you can set runtunefis to
true.

runtunefis = false;

Tune the FIS tree.

if runtunefis
    fisTout1 = tunefis(fisTin1,[in;out;rule],...
        trainingData.xn,trainingData.yn(:,1),toptions);
else
    preTunedFIST = load('tunedFIST');
    fisTout1 = preTunedFIST.fisTout1;
end

Next, tune the other FIS tree output by first removing the speed output and adding steering angle
output. Then get tunable settings from forwardSpeedFIS, backwardSpeedFIS, and speedFIS.

fisTin2 = fisTout1;
fisTin2.Outputs(1) = "speedFIS/output";
[in,out,rule] = getTunableSettings(fisTin2,'FIS',...
    ["forwardSpeedFIS" "backwardSpeedFIS" "speedFIS"]);

Tune the FIS tree. After training, reset the outputs of the FIS tree.
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if runtunefis
    rng('default')
    fisTout = tunefis(fisTin2,[in;out;rule],...
        trainingData.xn,trainingData.yn(:,2),toptions);
    fisTout.Outputs(1) = "phiFIS/output";
    fisTout.Outputs(2) = "speedFIS/output";
else
    fisTout = preTunedFIST.fisTout;
end

Check the individual training errors (root-mean-square error) of the outputs.

err = trainingData.yn - evalfis(fisTout,trainingData.xn,eoptions);
err = err.*err;
rmsePhi = sqrt(mean(err(:,1)))

rmsePhi = 0.1186

rmseSpeed = sqrt(mean(err(:,2)))

rmseSpeed = 0.0967

The performance is not significantly better compared to the ANFIS-trained fuzzy systems.

Autonomous Parking Simulation

According to the training data, the tuned FIS is valid for the following initial conditions:

• The car front must be initially located in front of the parking spot with 21 ≤ xf ≤ 25.
• The car must be closely aligned with the road direction, that is, the initial car orientation must be

θ ≈ 0 or θ ≈ 180 deg.
• The car must initially be at least 1 . 5 ft from either road edge, that is dlef t > 1 . 5 ft and

dright > 1 . 5 ft.

Parking from Right Side

The tuned FIS is trained for head-on parking from right side (θ ≈ 180 deg) of the road.

The following result shows a head-on parking simulation for xf = 24 ft, yf = 4 . 5 ft, and θ = 180 deg.

parkFromRight = true;
xf = 24;
yf = 4.5;
theta = 180;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked
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Simulate parking for a different initial condition where xf = 22 ft, yf = 5 ft, and θ = 170 deg.

parkFromRight = true;
xf = 22;
yf = 5;
theta = 170;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked
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In both cases, the car can autonomously park using the back-and-forth motion pattern. However, the
car does not maintain equal distance values on the left and right sides of the parking space. This
behavior is common for human drivers who do not generally park in the exact middle of a parking
space. Instead, they use a safe distance from each side.

Parking from Left Side

You can use the same fuzzy system for head-on parking from the left side (θ ≈ 0 deg). To do so: with
input dright interchanged with dlef t. Hence, the input values are changed as follows:

• Switch the sign of the angular deviation input Δθ.
• Switch the distance inputs for the left (dlef t) and right (dright) sides.

Simulate autonomous parking from left side for xf = 22 ft, yf = 5.5 ft, and θ = 0 deg.

parkFromRight = false;
xf = 22;
yf = 5;
theta = 0;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked
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Simulate parking for another initial condition where xf = 22 ft, yf = 5.5 ft, and θ = 0 deg.

parkFromRight = false;
xf = 23.8;
yf = 5.2;
theta = 7;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked
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In this case, similar to the right side parking results, the car follows a back-and-forth motion to safely
park the car.

Conclusion

The current fuzzy system design has the following shortcomings:

• The generated data only considers two motion patterns for autonomous parking. Therefore, the
autonomous parking system has limited robustness and does not represent all common skills of a
human driver. For example, the following figure shows another common scenario where the driver
moves back and turn right to make space on right from the occupied space.
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• The generated data uses a ±30 deg limit for steering angles. Therefore, it is difficult for the car to
park without oscillation due to the higher radius of curvature.

• The sensor model used in this example is a trivial occupancy detection model where the range
values are radially detected from the center of the car. Furthermore, when range data is similar
from each corner of the car, the fuzzy system can produce unexpected results and local optima
within the simulation. A better alternative is to model range data normal to each side of the car as
shown below, where clearance on each side is distinct from each other.

• ANFIS supports only Sugeno FISs, which may not always produce a smooth control surface.

To update the FIS tree design, you can consider the following potential changes.

• Use Mamdani FISs, which support additional tuning methods beyond ANFIS.
• Design the initial rulebase of the fuzzy inference systems using human reasoning and then tune

with the training data.
• Use a custom cost function to automatically generate data and optimize the parking trajectory

using reward-based parking simulation. For an example, see “Tune Fuzzy Robot Obstacle
Avoidance System Using Custom Cost Function” on page 3-70.

See Also
fistree | getTunableSettings | tunefis
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More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Fuzzy Trees” on page 2-52
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Neuro-Adaptive Learning and ANFIS
Suppose that you want to apply fuzzy inference to a system for which you already have a collection of
input/output data that you would like to use for modeling, model-following, or some similar scenario.
Also, assume that you do not necessarily have a predetermined model structure based on the
characteristics of variables in your system. In some modeling situations, discerning membership
functions parameters by looking at data can be difficult or impossible. In these cases, rather than
choosing the parameters associated with a given membership function arbitrarily, you can tailor the
membership function parameters to the input/output data. Using Fuzzy Logic Toolbox software, you
can tune Sugeno fuzzy inference systems using neuro-adaptive learning techniques similar to those
used for training neural networks.

Fuzzy Logic Toolbox software provides a command-line function (anfis) and an interactive app
(Neuro-Fuzzy Designer) for training an adaptive neuro-fuzzy inference system (ANFIS).

FIS Structure
Using ANFIS training methods, you can train Sugeno systems with the following properties:

• Single output
• Weighted average defuzzification
• First or zeroth order system; that is, all output membership functions must be the same type,

either 'linear' or 'constant'.
• No rule sharing. Different rules cannot use the same output membership function; that is, the

number of output membership functions must equal the number of rules.
• Unity weight for each rule.
• No custom membership functions or defuzzification methods.

To create such a fuzzy system in the MATLAB workspace, you can:

• Use the genfis function. When using this method, you can create your system using either grid
partitioning or subtractive clustering. Grid partitioning can produce a large number of rules when
the number of inputs reaches four or five. To reduce the number of rules, consider using the
subtractive clustering method.

• Use the Fuzzy Logic Designer app, and export the FIS to the MATLAB workspace.
• Use the sugfis function.
• Load a system from a file using the readfis function.

When training your system using the anfis function, specify the initial structure by creating an
anfisOptions option set and setting the InitialFIS property. If you do not specify this property,
the anfis function derives the FIS structure using grid partitioning.

When using the Neuro-Fuzzy Designer, in the Generate FIS section, you can create your FIS by:

• Loading from a file (select Load from file)
• Loading from the MATLAB workspace (select Load from worksp)
• Using grid partitioning (select Grid partition)
• Using subtractive clustering (select Sub. clustering)
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Training Data
To train a fuzzy system using neuro-adaptive methods, you must collect input/output training data
using experiments or simulations of the system you want to model. In general, ANFIS training works
well if the training data is fully representative of the features of the data that the trained FIS is
intended to model.

To specify your training data, you can:

• Create an array in the MATLAB workspace. Each row contains a data point, with the final column
containing the output value and the remaining columns containing input values. You can then pass
this data to the trainingData input argument of the anfis function or load it into the Neuro-
Fuzzy Designer app.

• Load the data from a .dat file. Each line of the file contains a data point with values separated by
white space. The final value on each line is the output, and the remaining values are the inputs.

When using the anfis function, create or load the input data and pass it to the trainingData input
argument.

When using Neuro-Fuzzy Designer, in the Load data section, select Training, and then:

• To load data from a file, select file.
• To load data from the MATLAB workspace, select worksp.

Training Options
Both anfis and the Neuro-Fuzzy Designer allow you to adjust the optimization method, number of
training epochs, and training error goal. However, anfis provides additional training options to
control the training step size.

Option anfisOptions Property Neuro-Fuzzy Designer Setting
Optimization Method OptimizationMethod In the Train FIS section, specify Optim.

Method.
Number of training
epochs

EpochNumber In the Train FIS section, specify
Epochs.

Training error goal ErrorGoal In the Train FIS section, specify Error
Tolerance.

Initial step size InitialStepSize Not available
Step-size decrease rate StepSizeDecreaseRate
Step-size increase rate StepSizeIncreaseRate

Optimization Method

To train a fuzzy system using ANFIS, the Fuzzy Logic Toolbox software uses a back-propagation
algorithm either alone or in combination with a least-squares algorithm. This training process tunes
the membership function parameters of a FIS such that the system models your input/output data.

The following table shows the two methods that both anfis and the Neuro-Fuzzy Designer use for
updating membership function parameters.
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Optimization Method anfisOptions Setting Neuro-Fuzzy Designer
Setting

Backpropagation for all parameters
(a steepest-descent method)

OprimizationMethod =
'backpropagation'

In the Train FIS section, under
Optim. Method, select
backpropa.

Hybrid method consisting of
backpropagation for the parameters
associated with the input
membership functions, and least
squares estimation for the
parameters associated with the
output membership functions

OprimizationMethod =
'hybrid'

In the Train FIS section, under
Optim. Method, select
hybrid.

Step Size

When training using the anfis function, you can adjust the training step size options. During
training, the software updates the step-size according to the following rules:

• If the error undergoes four consecutive reductions, increase the step size by multiplying it by a
constant (StepSizeIncreaseRate) greater than one.

• If the error undergoes two consecutive combinations of one increase and one reduction, decrease
the step size by multiplying it by a constant (StepSizeDecreaseRate) less than one.

Ideally, the step size increases at the start of training, reaches a maximum, and then decreases for
the remainder of the training. To achieve this step size profile, adjust the initial step size
(InitialStepSize), step-size increase rate, and step-size decrease rate.

Display Options
When training using the anfis function, you can specify what training progress information to
display in the MATLABCommand Window. Using an anfisOptions option set, you can set the
following display options.

• DisplayANFISInformation — Display ANFIS information at the start of training
• DisplayErrorValues — Display the training error at each epoch
• DisplayStepSize — Display the step-size each time it changes.
• DisplayFinalResults — Display the final training error and validation error

The Neuro-Fuzzy Designer does not provide user-specified display options. Instead, it displays the
training progress as a plot.

Training Validation
Validation data lets you check the generalization capability of your trained fuzzy inference system.
The validation data should fully represent the features of the data the FIS is intended to model, while
also being sufficiently different from the training data to test training generalization. The software
uses this data set to cross-validate the fuzzy inference model by applying the validation data to the
model and seeing how well the model responds to this data.

Model validation is useful in the following situations:
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• Noisy data — In some cases, data is collected using noisy measurements, and the training data is
unable to represent all the features of the data the FIS is intended to model.

• Overfitting — Since the model structure used for ANFIS is fixed with a large number of
parameters, there is a tendency for the model to overfit the data on which it is trained, especially
when using a large number of training epochs. If overfitting does occur, the trained FIS may not
generalize well to other independent data sets.

The idea behind using a checking data set for model validation is that, after a certain point in the
training process, the model begins overfitting the training data set. In principle, the model error for
the checking data set decreases up to the point that overfitting begins. After this point, the model
error for the checking data increases. Overfitting is accounted for by testing the trained FIS against
the checking data, and choosing the membership function parameters to be those associated with the
minimum checking error if these errors indicate model overfitting.

Usually, the training and checking data sets are collected based on observations of the target system
and are then stored in separate files. To specify validation data when using the:

• anfis function, create an anfisOptions object, and set the ValidationData option.
• Neuro-Fuzzy Designer, in the Load data section, select Checking.

The array and file formats for the checking data are the same as those for the training data.

Training Results
When you train your fuzzy system using the anfis function, you can obtain the following trained
fuzzy systems:

• The fis output argument is the fuzzy system for which the training error is minimum. This system
is always returned by the anfis function, and corresponds to the FIS returned by Neuro-Fuzzy
Designer when you do not specify checking data.

• The chkFIS output argument is the fuzzy system for which the validation error is minimum. This
system is returned only when you specify validation data using anfisOptions, and corresponds
to the FIS returned by Neuro-Fuzzy Designer when you specify checking data. This FIS object is
the one that you should use for further calculation if checking data is used for cross-validation.

You can obtain the error associated with each of the trained fuzzy systems. In each case, the returned
error is the root mean squared error (RMSE), and is returned as a vector. Each element of the vector
is the RMSE error value at each training epoch.

• Training error — Difference between the training data output value and the output of the fuzzy
inference system for the corresponding training data input values.

• Validation error — Difference between the checking data output value and the output of the fuzzy
inference system for the corresponding checking data input values. This error is returned only
when you specify validation data using anfisOptions.

During training, the Neuro-Fuzzy Designer app plots the training and checking error for each
training epoch. Exporting training and checking error from the app is not supported. To obtain the
training error, you must retrain the system from the command-line. For an example, see “Save
Training Error Data to MATLAB Workspace” on page 3-130.

To further test your trained fuzzy system, you can use an additional set of testing data that you did
not use for training or validation. To do so:
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• When training a system at the command-line, use the evalfis function.
• When using Neuro-Fuzzy Designer, in the Load data section, select Testing, and click Load

Data. To evaluate the trained system for any loaded data set, in the Test FIS section, select a data
set, and click Test Now.

Training Algorithm Differences
The Neuro-Fuzzy Designer app manages training epochs in a manner different from the anfis
function. This difference produces variations in the training results.

To train a system for N epochs at the command line, you call the anfis function one time, specifying
the number of epochs as N. However, the Neuro-Fuzzy Designer app calls the anfis function N
times, specifying the number of epochs as 2 each time.

For a command-line example that demonstrates the Neuro-Fuzzy Designer training algorithm, see
“Save Training Error Data to MATLAB Workspace” on page 3-130.
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More About
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-120
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• “Save Training Error Data to MATLAB Workspace” on page 3-130
• “Predict Chaotic Time-Series using ANFIS” on page 3-136
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Train Adaptive Neuro-Fuzzy Inference Systems
This example shows how to create, train, and test Sugeno-type fuzzy systems using the Neuro-Fuzzy
Designer. For more information on:

• Neuro-adaptive fuzzy systems, see “Neuro-Adaptive Learning and ANFIS” on page 3-114.
• Training neuro-adaptive fuzzy systems at the command line, see anfis.

Load Training Data
Training and validating systems using the Neuro-Fuzzy Designer app requires data. Import the
training data (fuzex1trnData) and validation data (fuzex1chkData) to the MATLAB workspace.

load fuzex1trnData.dat
load fuzex1chkData.dat

Open the Neuro-Fuzzy Designer app.

neuroFuzzyDesigner
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Load the training data set from the workspace. In the Load data section, select Training and
worksp.

Click Load Data. In the Load from workspace dialog box, enter the variable name fuzex1trnData.

Click OK. The Neuro-Fuzzy Designer displays the training data in the plot as a set of circles.

Load the checking data from the MATLAB workspace into the Neuro-Fuzzy Designer. In the Load
data section, select Checking.

Load the checking data in the same manner as the training data, specifying the variable name
fuzex1chkData. The Neuro-Fuzzy Designer displays the checking data using plus signs
superimposed on the training data.
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To clear a specific data set from the app, in the Load data area, select the data Type, and click Clear
Data.

Generate or Load FIS Structure
Before you start the FIS training, you must specify an initial FIS model structure. To specify the
model structure, you perform one of the following tasks:

• Load a previously saved single-output Sugeno-type FIS object from a file or the MATLAB
workspace.

• Generate the initial FIS model using grid partitioning.
• Generate the initial FIS model using subtractive clustering.

For this example, generate the initial FIS using grid partitioning. In the Neuro-Fuzzy Designer, in
the Generate FIS section, select Grid partition.

Click Generate FIS.

In the Add Membership Functions dialog box:
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• In the Input section, in Number of MFs, specify the number of input membership functions. For
this example, use 4 membership functions for all input variables.

• In MF Type, select gbellmf as the input membership function type.
• In the Output section, in MF Type, select linear as the output membership function type.

Interactively Specify FIS Structure

Alternatively, you can interactively specify your own FIS structure with specified membership
functions and rules. The system you define must be a Sugeno system with the following properties:

• Single output
• Weighted average defuzzification
• First or zeroth order system; that is, all output membership functions must be the same type,

either 'linear' or 'constant'.
• No rule sharing. Different rules cannot use the same output membership function; that is, the

number of output membership functions must equal the number of rules.
• Unity weight for each rule.
• No custom membership functions or defuzzification methods.

To define the:

• Membership functions for each variable, in the Neuro-Fuzzy Designer, select Edit >
Membership Functions. Then, in the Membership Function Editor window, define the
membership functions.
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• Rules, in the Neuro-Fuzzy Designer, select Edit > Rules. Then, in the Rule Editor window,
define the rules.

These tools are the same as those used by the Fuzzy Logic Designer app. For more information, see
“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14.

View FIS Structure

After you load or generate the FIS, you can view the model structure. To do so, in the Neuro-Fuzzy
Designer, click Structure.

The branches in this graph are color coded. Color coding of branches characterize the rules and
indicate whether or not AND, NOT, or OR are used in the rules. The input is represented by the left-
most node and the output by the right-most node. The node represents a normalization factor for the
rules. To view information about the structure, click on each node.

Also, to view the FIS:

• Membership functions, in the Neuro-Fuzzy Designer, select Edit > Membership Functions.
• Rules, in the Neuro-Fuzzy Designer, select Edit > Rules.
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Train FIS
After loading the training data and generating the initial FIS structure, you can train your FIS. To do
so, in the Neuro-Fuzzy Designer, in the Train FIS section, specify the following parameters:

• Optim. Method — Optimization method. For this example, select the hybrid method, which uses
a combination of backpropagation and least-squares regression to tune the FIS parameters.

• Epochs — Number of training epochs. For this example, specify 40 epochs.
• Error Tolerance — Error tolerance stopping condition. For this example, specify a value of 0,

which indicates that the training will stop when the number of training epochs is reached.

To train the FIS, click Train Now.

The app trains the FIS and plots the training error (as stars) and checking error (as dots) for each
training epoch.

The checking error decreases up to a certain point in the training, and then it increases. This
increase occurs at the point where the training starts overfitting the training data. The app selects
the FIS associated with this overfitting point as the trained ANFIS model.
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Validate Trained FIS
After the FIS is trained, validate the model using a Testing or Checking data set that differs from
the training data. For this example, use the previously loaded checking data.

To test your FIS against the checking data, in the Test FIS section, select Checking data. Then,
click Test Now.

The app plots the output values of the testing data set (using blue +'s) and the output of the trained
FIS for the corresponding testing data input values (using red *'s). The FIS output values correlate
well with the expected output.

Importance of Checking Data
It is important to have checking data that fully represents the features of the data the FIS is intended
to model. If your checking data is significantly different from your training data and does not cover
the same data features to model as the training data, then the training results will be poor.

For example, load new training and checking data into the Neuro-Fuzzy Designer. This data has
significantly different training and checking sets.
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1 At the MATLAB command line, load the training and checking data.

load fuzex2trnData.dat
load fuzex2chkData.dat

2 Clear the previously loaded training and checking data. In the Load data section, select each
data type, click Clear Data.

3 Load the training data (fuzex2trnData) and checking data (fuzex2chkData), as you did
previously.

Generate a FIS structure and train the FIS as you did previously, except now select 60 training
epochs.

 Train Adaptive Neuro-Fuzzy Inference Systems

3-127



In this case, the checking error is large, with the minimum occurring in the first epoch. Since the app
chooses the trained FIS parameters associated with the minimum checking error, the trained FIS
does not sufficiently capture the features of this data set. It is important to know the features of your
data set well when you select your training and checking data. When you do not know the features of
your data, you can analyze the checking error plots to see whether or not the checking data
performed sufficiently well with the trained model.

In this example, the checking error is sufficiently large to indicate that either you need to select more
data for training or modify your membership function choices (both the number of membership
functions and the type). Otherwise, if you think the training data sufficiently captures the features
you are trying to represent, the system can be retrained without the checking data.

To verify the poor training results, test the trained FIS model against the checking data.
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As expected, there are significant differences between the checking data output values and the FIS
output.

See Also
Neuro-Fuzzy Designer

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
• “Save Training Error Data to MATLAB Workspace” on page 3-130
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Save Training Error Data to MATLAB Workspace
When using Neuro-Fuzzy Designer, you can export your initial FIS structure to the MATLAB
workspace and then generate ANFIS training error values. Since exporting the training and
validation error profiles from the Neuro-Fuzzy Designer app is not supported, use this method to
generate such error plots.

The following example shows how to save the training error generated during ANFIS training to the
MATLAB workspace.

1 Load your training data (fuzex1trnData) and validation data (fuzex1chkData) to the MATLAB
workspace.

load fuzex1trnData.dat
load fuzex1chkData.dat

2 Open the Neuro-Fuzzy Designer app.

neuroFuzzyDesigner

3 Load the training data from the MATLAB workspace into the Neuro-Fuzzy Designer.

a In the Load data section, select Training.
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b Select worksp.
c Click Load Data. In the Load from workspace dialog box, enter the variable name

fuzex1trnData.

d Click OK. The Neuro-Fuzzy Designer displays the training data in the plot as a set of
circles.

4 Load the checking data from the MATLAB workspace into the Neuro-Fuzzy Designer. In the
Load data section, select Checking.

Load the checking data in the same manner as the training data, specifying the variable name
fuzex1chkData. The Neuro-Fuzzy Designer displays the checking data using plus signs
superimposed on the training data.
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5 Generate an initial FIS.

a In the Generate FIS section, select Grid partition.
b Click Generate FIS.
c In the Add Membership Functions dialog box:

• In the Input section, in Number of MFs, specify the number of input membership
functions. For this example use 4 for all input variables.

• In MF Type, select gbellmf as the input membership function type.
• In the Output section, in MF Type, select linear as the output membership function

type.
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d Click OK.
6 Export the initial FIS to the MATLAB workspace.

a In the Neuro-Fuzzy Designer, select File > Export > To Workspace.

This action opens a dialog box where you specify the MATLAB variable name.
b In the Export To Workspace dialog box, in the Workspace variable field, enter initfis.

c Click OK. The app exports the FIS structure to the MATLAB workspace.
7 Train the FIS for 40 epochs. Instead of using a single call to the anfis function, call the function

inside a loop using 2 epochs for each call. This training method replicates the training process
used by the Neuro-Fuzzy Designer app.

At each training epoch, save the training and validation errors.
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fis = initfis;
opt = anfisOptions('EpochNumber',2,'ValidationData',fuzex1chkData);
trainError = zeros(1,40);
checkError = zeros(1,40);
for ct = 1:40
    opt.InitialFIS = fis;
    [fis,error,~,~,chkError] = anfis(fuzex1trnData,opt);
    trainError(ct) = error(1);
    checkError(ct) = chkError(1);
end

8 Plot the training and validation errors over the training process. These error values are the root
mean squared errors at each training epoch.

epochNum = 1:40;
plot(epochNum,trainError,'b*',epochNum,checkError,'ro')
xlabel('Epoch Number')
ylabel('Error')
legend('Training Error','Validation Error')

These error profiles are similar to the error profiles when the same initial FIS structure is trained
in the Neuro-Fuzzy Designer app.

See Also
Neuro-Fuzzy Designer
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More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-120

 Save Training Error Data to MATLAB Workspace

3-135



Predict Chaotic Time-Series using ANFIS
This example shows how to do chaotic time-series prediction using ANFIS.

Time Series Data

This example uses anfis to predict a time series generated by the following Mackey-Glass (MG)
time-delay differential equation.

ẋ(t) = 0 . 2x(t − τ)
1 + x10(t − τ)

− 0 . 1x(t)

This time series is chaotic with no clearly defined period. The series does not converge or diverge,
and the trajectory is highly sensitive to initial conditions. This benchmark problem is used in the
neural network and fuzzy modeling research communities.

To obtain the time series value at integer points, the fourth-order Runge-Kutta method was used to
find the numerical solution to the previous MG equation. It was assumed that x(0) = 1 . 2, τ = 17, and
x(t) = 0 for t < 0. The result was saved in the file mgdata.dat.

Load and plot the MG time series.

load mgdata.dat
time = mgdata(:,1);
x = mgdata(:, 2);
figure(1)
plot(time,x)
title('Mackey-Glass Chaotic Time Series')
xlabel('Time (sec)')
ylabel('x(t)')
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Preprocess Data

In time-series prediction, you use known values of the time series up to point in time, t, to predict the
value at some point in the future, t + P. The standard method for this type of prediction is to create a
mapping from D sample data points, sampled every Δ units in time (x(t − (D− 1)Δ), …, x(t − Δ), x(t)) to
a predicted future value x = (t + P). Following the conventional settings for predicting the MG time
series, set D = 4 and Δ = P = 6. For each t, the input training data for anfis is a four-column vector
of the following form.

w(t) = [x(t − 19), x(t − 12), x(t − 6), x(t)]

The output training data corresponds to the trajectory prediction.

s(t) = x(t + 6)

For each t, ranging in values from 118 to 1117, there are 1000 input/output training samples. For this
example, use the first 500 samples as training data (trnData) and the second 500 values as checking
data for validation (chkData). Each row of the training and checking data arrays contains one sample
point where the first four columns contain the four-dimensional input w and the fifth column contains
the output s.

Construct the training and checking data arrays.

for t = 118:1117 
    Data(t-117,:) = [x(t-18) x(t-12) x(t-6) x(t) x(t+6)]; 
end
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trnData = Data(1:500,:);
chkData = Data(501:end,:);

Build Initial Fuzzy System

Create an initial Sugeno FIS object for training using the genfis function with grid partitioning.

fis = genfis(trnData(:,1:end-1),trnData(:,end),...
    genfisOptions('GridPartition'));

The number of FIS inputs and outputs corresponds to the number of columns in the input and output
training data, four and one, respectively.

By default, genfis creates two generalized bell membership functions for each of the four inputs.
The initial membership functions for each variable are equally spaced and cover the whole input
space.

figure
subplot(2,2,1)
plotmf(fis,'input',1)
subplot(2,2,2)
plotmf(fis,'input',2)
subplot(2,2,3)
plotmf(fis,'input',3)
subplot(2,2,4)
plotmf(fis,'input',4)
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The generated FIS object contains 24 = 16 fuzzy rules with 104 parameters (24 nonlinear parameters
and 80 linear parameters). To achieve good generalization capability, it is important that the number
of training data points be several times larger than the number parameters being estimated. In this
case, the ratio between data and parameters is approximately five (500/104), which is a good balance
between fitting parameters and training sample points.

Train ANFIS Model

To configure training options, create an anfisOptions option set, specifying the initial FIS and
validation data.

options = anfisOptions('InitialFIS',fis,'ValidationData',chkData);

Train the FIS using the specified training data and options.

[fis1,error1,ss,fis2,error2] = anfis(trnData,options);

ANFIS info: 
    Number of nodes: 55
    Number of linear parameters: 80
    Number of nonlinear parameters: 24
    Total number of parameters: 104
    Number of training data pairs: 500
    Number of checking data pairs: 500
    Number of fuzzy rules: 16

Start training ANFIS ...

   1      0.00296046      0.00292488
   2      0.00290346      0.0028684
   3      0.00285048      0.00281544
   4      0.00280117      0.00276566
   5      0.00275517      0.00271874
Step size increases to 0.011000 after epoch 5.
   6      0.00271214      0.00267438
   7      0.00266783      0.00262818
   8      0.00262626      0.00258435
   9      0.00258702      0.00254254
Step size increases to 0.012100 after epoch 9.
  10      0.00254972      0.00250247

Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.002550
Minimal checking RMSE = 0.00250247

fis1 is the trained fuzzy inference system for the training epoch where the training error is smallest.
Since you specified validation data, the fuzzy system with the minimum checking error, fis2, is also
returned. The FIS with the smallest checking error shows the best generalization beyond the training
data.

Plots the membership functions for the trained system.

figure
subplot(2,2,1)
plotmf(fis2,'input',1)
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subplot(2,2,2)
plotmf(fis2,'input',2)
subplot(2,2,3)
plotmf(fis2,'input',3)
subplot(2,2,4)
plotmf(fis2,'input',4)

Plot Errors Curves

Plot the training and checking error signals.

figure
plot([error1 error2])
hold on
plot([error1 error2],'o')
legend('Training error','Checking error')
xlabel('Epochs')
ylabel('Root Mean Squared Error')
title('Error Curves')
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The training error is higher than the checking error in all epochs. This phenomenon is not uncommon
in ANFIS learning or nonlinear regression in general; it could indicate that additional training could
produce better training results.

Compare Original and Predicted Series

To check prediction capability of the trained system, evaluate the fuzzy system using the training and
checking data, and plot the result alongside the original

anfis_output = evalfis(fis2,[trnData(:,1:4); chkData(:,1:4)]);

figure
index = 125:1124;
plot(time(index),[x(index) anfis_output])
xlabel('Time (sec)')
title('MG Time Series and ANFIS Prediction')
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The predicted series is similar to the original series.

Calculate and plot the prediction error.

diff = x(index) - anfis_output;
plot(time(index),diff)
xlabel('Time (sec)')
title('Prediction Errors')
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The scale of the prediction error plot is about one-hundredth of the scale of the time-series plot. In
this example, you trained the system for only 10 epoch. Training for additional epochs can improve
the training results.

See Also
anfis | evalfis | genfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
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Modeling Inverse Kinematics in a Robotic Arm
This example shows how to use a fuzzy system to model the inverse kinematics in a two-joint robotic
arm.

What Is Inverse Kinematics?

Kinematics is the science of motion. In a two-joint robotic arm, given the angles of the joints, the
kinematics equations give the location of the tip of the arm. Inverse kinematics refers to the reverse
process. Given a desired location for the tip of the robotic arm, what should the angles of the joints be
so as to locate the tip of the arm at the desired location. There is usually more than one solution and
can at times be a difficult problem to solve.

This is a typical problem in robotics that needs to be solved to control a robotic arm to perform tasks
it is designated to do. In a 2-dimensional input space, with a two-joint robotic arm and given the
desired coordinate, the problem reduces to finding the two angles involved. The first angle is between
the first arm and the ground (or whatever it is attached to). The second angle is between the first arm
and the second arm.

Figure 1: Illustration showing the two-joint robotic arm with the two angles, theta1 and theta2

Why Use Fuzzy Logic?

For simple structures like the two-joint robotic arm, it is possible to mathematically deduce the
angles at the joints given the desired location of the tip of the arm. However with more complex
structures (for example: n-joint robotic arms operating in a 3-dimensional input space) deducing a
mathematical solution for the inverse kinematics may prove challenging.

Using fuzzy logic, we can construct a fuzzy inference system that deduces the inverse kinematics if
the forward kinematics of the problem is known, hence sidestepping the need to develop an analytical
solution. Also, the fuzzy solution is easily understandable and does not require special background
knowledge to comprehend and evaluate it.

In the following section, a broad outline for developing such a solution is described, and later, the
detailed steps are elaborated.
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Overview of Fuzzy Solution

Since the forward kinematics formulae for the two-joint robotic arm are known, x and y coordinates
of the tip of the arm are deduced for the entire range of angles of rotation of the two joints. The
coordinates and the angles are saved to be used as training data to train an ANFIS (adaptive neuro-
fuzzy inference system) network.

During training, the ANFIS network learns to map the coordinates (x, y) to the angles (theta1,
theta2). The trained ANFIS network is then used as a part of a larger control system to control the
robotic arm. Knowing the desired location of the robotic arm, the control system uses the trained
ANFIS network to deduce the angular positions of the joints and applies force to the joints of the
robotic arm accordingly to move it to the desired location.

What Is ANFIS?

ANFIS stands for adaptive neuro-fuzzy inference system. It is a hybrid neuro-fuzzy technique that
brings learning capabilities of neural networks to fuzzy inference systems. The learning algorithm
tunes the membership functions of a Sugeno-type fuzzy inference system using the training input/
output data.

In this case, the input/output data refers to the "coordinates/angles" dataset. The coordinates act as
input to the ANFIS and the angles act as the output. The learning algorithm teaches the ANFIS to
map the coordinates to the angles through a process called training. At the end of training, the
trained ANFIS network would have learned the input-output map and be ready to be deployed into
the larger control system solution.

Data Generation

Let theta1 be the angle between the first arm and the ground. Let theta2 be the angle between the
second arm and the first arm (Refer to Figure 1 for illustration). Let the length of the first arm be l1
and that of the second arm be l2.

Assume that the first joint has limited freedom to rotate and it can rotate between 0 and 90 degrees.
Similarly, assume that the second joint has limited freedom to rotate and can rotate between 0 and
180 degrees. (This assumption takes away the need to handle some special cases which will confuse
the discourse.) Hence, 0<=theta1<=pi/2 and 0<=theta2<=pi.
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Figure 2: Illustration showing all possible theta1 and theta2 values.

Now, for every combination of theta1 and theta2 values the x and y coordinates are deduced using
forward kinematics formulae.

The following code snippet shows how data is generated for all combination of theta1 and theta2
values and saved into a matrix to be used as training data. The reason for saving the data in two
matrices is explained in the following section.

l1 = 10; % length of first arm
l2 = 7; % length of second arm

theta1 = 0:0.1:pi/2; % all possible theta1 values
theta2 = 0:0.1:pi; % all possible theta2 values

[THETA1,THETA2] = meshgrid(theta1,theta2); % generate a grid of theta1 and theta2 values

X = l1 * cos(THETA1) + l2 * cos(THETA1 + THETA2); % compute x coordinates
Y = l1 * sin(THETA1) + l2 * sin(THETA1 + THETA2); % compute y coordinates

data1 = [X(:) Y(:) THETA1(:)]; % create x-y-theta1 dataset
data2 = [X(:) Y(:) THETA2(:)]; % create x-y-theta2 dataset
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The following plot shows all the X-Y data points generated by cycling through different combinations
of theta1 and theta2 and deducing x and y coordinates for each. The plot can be generated by
using the code-snippet shown below. The plot is illustrated further for easier understanding.

  plot(X(:),Y(:),'r.'); 
  axis equal;
  xlabel('X','fontsize',10)
  ylabel('Y','fontsize',10)
  title('X-Y coordinates generated for all theta1 and theta2 combinations using forward kinematics formula','fontsize',10)

Figure 3: X-Y coordinates generated for all theta1 and theta2 combinations using forward
kinematics formulae

Building ANFIS Networks

One approach to building an ANFIS solution for this problem, is to build two ANFIS networks, one to
predict theta1 and the other to predict theta2.

In order for the ANFIS networks to be able to predict the angles they have to be trained with sample
input-output data. The first ANFIS network will be trained with X and Y coordinates as input and
corresponding theta1 values as output. The matrix data1 contains the x-y-theta1 dataset
required to train the first ANFIS network. Therefore data1 will be used as the dataset to train the
first ANFIS network.
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Similarly, the second ANFIS network will be trained with X and Y coordinates as input and
corresponding theta2 values as output. The matrix data2 contains the x-y-theta2 dataset
required to train the second ANFIS network. Therefore data2 will be used as the dataset to train the
second ANFIS network.

To train an ANFIS network, first specify the training options using the anfisOptions command. For
this example, specify an FIS object with 7 membership functions for each input variable. Train the
system for 150 epochs and suppress the Command Window display of training information.

opt = anfisOptions;
opt.InitialFIS = 7;
opt.EpochNumber = 150;
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train an ANFIS system using the first set of training data, data1.

disp('--> Training first ANFIS network.')

--> Training first ANFIS network.

anfis1 = anfis(data1,opt);

Change the number of input membership functions and train an ANFIS system using the second set
of training data, data2.

disp('--> Training second ANFIS network.')

--> Training second ANFIS network.

opt.InitialFIS = 6;
anfis2 = anfis(data2,opt);

For this example, the number of input membership functions and training epochs were selected based
on experimentation with different potential values.

anfis1 and anfis2 represent the two trained ANFIS networks that will be deployed in the larger
control system.

Once the training is complete, the two ANFIS networks have learned to approximate the angles
(theta1, theta2) as a function of the coordinates (x, y). One advantage of using the fuzzy approach
is that the ANFIS network can now approximate the angles for coordinates that are similar but not
exactly the same as it was trained with. For example, the trained ANFIS networks are now capable of
approximating the angles for coordinates that lie between two points that were included in the
training dataset. This will allow the final controller to move the arm smoothly in the input space.

We now have two trained ANFIS networks which are ready to be deployed into the larger system that
will utilize these networks to control the robotic arms.

Validating ANFIS Networks

Having trained the networks, an important follow up step is to validate the networks to determine
how well the ANFIS networks would perform inside the larger control system.
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Since this example problem deals with a two-joint robotic arm whose inverse kinematics formulae can
be derived, it is possible to test the answers that the ANFIS networks produce with the answers from
the derived formulae.

Assume that it is important for the ANFIS networks to have low errors within the operating range
0<x<2 and 8<y<10.

x = 0:0.1:2; % x coordinates for validation
y = 8:0.1:10; % y coordinates for validation

The theta1 and theta2 values are deduced mathematically from the x and y coordinates using
inverse kinematics formulae.

[X,Y] = meshgrid(x,y);

c2 = (X.^2 + Y.^2 - l1^2 - l2^2)/(2*l1*l2);
s2 = sqrt(1 - c2.^2);
THETA2D = atan2(s2,c2); % theta2 is deduced

k1 = l1 + l2.*c2;
k2 = l2*s2;
THETA1D = atan2(Y,X) - atan2(k2,k1); % theta1 is deduced

THETA1D and THETA2D are the variables that hold the values of theta1 and theta2 deduced using
the inverse kinematics formulae.

theta1 and theta2 values predicted by the trained ANFIS networks are obtained by using the
command evalfis which evaluates a FIS for the given inputs.

Here, evalfis is used to find out the FIS outputs for the same x-y values used earlier in the inverse
kinematics formulae.

XY = [X(:) Y(:)];
THETA1P = evalfis(anfis1,XY); % theta1 predicted by anfis1
THETA2P = evalfis(anfis2,XY); % theta2 predicted by anfis2

Now, we can see how close the FIS outputs are with respect to the deduced values.

theta1diff = THETA1D(:) - THETA1P;
theta2diff = THETA2D(:) - THETA2P;

subplot(2,1,1);
plot(theta1diff);
ylabel('THETA1D - THETA1P','fontsize',10)
title('Deduced theta1 - Predicted theta1','fontsize',10)

subplot(2,1,2);
plot(theta2diff);
ylabel('THETA2D - THETA2P','fontsize',10)
title('Deduced theta2 - Predicted theta2','fontsize',10)
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The errors are in the 1e-3 range which is a fairly good number for the application it is being used in.
However this may not be acceptable for another application, in which case the parameters to the
anfis function may be tweaked until an acceptable solution is arrived at. Also, other techniques like
input selection and alternate ways to model the problem may be explored.

Building a Solution Around the Trained ANFIS Networks

Now given a specific task, such as robots picking up an object in an assembly line, the larger control
system will use the trained ANFIS networks as a reference, much like a lookup table, to determine
what the angles of the arms must be, given a desired location for the tip of the arm. Knowing the
desired angles and the current angles of the joints, the system will apply force appropriately on the
joints of the arms to move them towards the desired location.

The invkine command launches a GUI that shows how the two trained ANFIS networks perform when
asked to trace an ellipse.
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Figure 4: GUI for Inverse Kinematics Modeling.

The two ANFIS networks used in the example have been pretrained and are deployed into a larger
system that controls the tip of the two-joint robot arm to trace an ellipse in the input space.

The ellipse to be traced can be moved around. Move the ellipse to a slightly different location and
observe how the system responds by moving the tip of the robotic arm from its current location to the
closest point on the new location of the ellipse. Also observe that the system responds smoothly as
long as the ellipse to be traced lies within the 'x' marked spots which represent the data grid that was
used to train the networks. Once the ellipse is moved outside the range of data it was trained with,
the ANFIS networks respond unpredictably. This emphasizes the importance of having relevant and
representative data for training. Data must be generated based on the expected range of operation to
avoid such unpredictability and instability issues.

See Also
anfis | evalfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
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Adaptive Noise Cancellation Using ANFIS
This example shows how to do adaptive nonlinear noise cancellation using the anfis and genfis
commands.

Signal and Noise

Define a hypothetical information signal, x, sampled at 100Hz over 6 seconds.

time = (0:0.01:6)';
x = sin(40./(time+0.01));
plot(time,x)
title('Information Signal x','fontsize',10)
xlabel('time','fontsize',10)
ylabel('x','fontsize',10)

Assume that x cannot be measured without an interference signal, n2, which is generated from
another noise source, n1, via a certain unknown nonlinear process.

The plot below shows noise source n1.

n1 = randn(size(time));
plot(time,n1)
title('Noise Source n_1','fontsize',10)
xlabel('time','fontsize',10)
ylabel('n_1','fontsize',10)
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Assume that the interference signal, n2, that appears in the measured signal is generated via an
unknown nonlinear equation:

n2 k =
4sin n1 k ⋅ n1 k− 1

1 + n1 k− 1 2

Plot this nonlinear characteristic as a surface.

domain = linspace(min(n1),max(n1),20);
[xx,yy] = meshgrid(domain,domain);
zz = 4*sin(xx).*yy./(1+yy.^2);

surf(xx,yy,zz);
xlabel('n_1(k)','fontsize',10);
ylabel('n_1(k-1)','fontsize',10);
zlabel('n_2(k)','fontsize',10);
title('Unknown Interference Channel Characteristics','fontsize',10);
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Compute the interference signal, n2, from the noise source, n1, and plot both signals.

n1d0 = n1;                            % n1 with delay 0
n1d1 = [0; n1d0(1:length(n1d0)-1)];   % n1 with delay 1
n2 = 4*sin(n1d0).*n1d1./(1+n1d1.^2);  % interference

subplot(2,1,1)
plot(time,n1);
ylabel('noise n_1','fontsize',10);
subplot(2,1,2)
plot(time,n2);
ylabel('interference n_2','fontsize',10);
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n2 is related to n1 via the highly nonlinear process shown previously; from the plots, it is hard to see if
these two signals are correlated in any way.

The measured signal, m, is the sum of the original information signal, x, and the interference, n2.
However, we do not know n2. The only signals available to us are the noise signal, n1, and the
measured signal m.

m = x + n2;             % measured signal
subplot(1,1,1)
plot(time, m)
title('Measured Signal','fontsize',10)
xlabel('time','fontsize',10)
ylabel('m','fontsize',10)
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You can recover the original information signal, x, using adaptive noise cancellation via ANFIS
training.

Build the ANFIS Model

Use the anfis command to identify the nonlinear relationship between n1 and n2. While n2 is not
directly available, you can assume that m is a "contaminated" version of n2 for training. This
assumption treats x as "noise" in this kind of nonlinear fitting.

Assume the order of the nonlinear channel is known (in this case, 2), so you can use a 2-input ANFIS
model for training.

Define the training data. The first two columns of data are the inputs to the ANFIS model, n1 and a
delayed version of n1. The final column of data is the measured signal, m.

delayed_n1 = [0; n1(1:length(n1)-1)];
data = [delayed_n1 n1 m];

Generate the initial FIS object. By default, the grid partitioning algorithm uses two membership
functions for each input variable, which produces four fuzzy rules for learning.

genOpt = genfisOptions('GridPartition');
inFIS = genfis(data(:,1:end-1),data(:,end),genOpt);

Tune the FIS using the anfis command with an initial training step size of 0.2.
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trainOpt = anfisOptions('InitialFIS',inFIS,'InitialStepSize',0.2);
outFIS = anfis(data,trainOpt);

ANFIS info: 
    Number of nodes: 21
    Number of linear parameters: 12
    Number of nonlinear parameters: 12
    Total number of parameters: 24
    Number of training data pairs: 601
    Number of checking data pairs: 0
    Number of fuzzy rules: 4

Start training ANFIS ...

   1      0.761817
   2      0.748426
   3      0.739315
   4      0.733993
   5      0.729492
Step size increases to 0.220000 after epoch 5.
   6      0.725382
   7      0.721269
   8      0.717621
   9      0.714474
Step size increases to 0.242000 after epoch 9.
  10      0.71207

Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.712070

The tuned FIS, outFIS, models the second-order relationship between n1 and n2.

Evaluate Model

Calculate the estimated interference signal, estimated_n2, by evaluating the tuned FIS using the
original training data.

estimated_n2 = evalfis(outFIS,data(:,1:2));

Plot the and actual n2 signal and the estimated version from the ANFIS output.

subplot(2,1,1)
plot(time, n2)
ylabel('n_2 (unknown)'); 

subplot(2,1,2)
plot(time, estimated_n2)
ylabel('Estimated n_2');
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The estimated information signal is equal to the difference between the measured signal, m, and the
estimated interference (ANFIS output).

estimated_x = m - estimated_n2;

Compare the original information signal, x, and the estimate, estimated_x.

figure
plot(time,estimated_x,'b',time,x,'r')
legend('Estimated x','Actual x (unknown)','Location','SouthEast')
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Without extensive training, the ANFIS produces a good estimate of the information signal.

See Also
anfis | evalfis | genfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
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Nonlinear System Identification
This example shows how to use anfis command for nonlinear dynamic system identification.

This example requires System Identification Toolbox™, as a comparison is made between a nonlinear
ANFIS and a linear ARX model.

Problem Setup

Exit if System Identification Toolbox is not available.

if ~fuzzychecktoolboxinstalled('ident')
    errordlg('DRYDEMO needs the System Identification Toolbox.');
    return;
end

The data set for ANFIS and ARX modeling was obtained from a laboratory device called Feedback's
Process Trainer PT 326, as described in Chapter 17 of Prof. Lennart Ljung's book "System
Identification, Theory for the User", Prentice-Hall, 1987. The device functions like a hair dryer: air is
fanned through a tube and heated at the inlet. The air temperature is measured by a thermocouple at
the outlet. The input u(k) is the voltage over a mesh of resistor wires to heat incoming air; the output
y(k) is the outlet air temperature.

Here are the results of the test.

load drydemodata
data_n = length(y2);
output = y2;
input = [[0; y2(1:data_n-1)] ...
        [0; 0; y2(1:data_n-2)] ...
        [0; 0; 0; y2(1:data_n-3)] ...
        [0; 0; 0; 0; y2(1:data_n-4)] ...
        [0; u2(1:data_n-1)] ...
        [0; 0; u2(1:data_n-2)] ...
        [0; 0; 0; u2(1:data_n-3)] ...
        [0; 0; 0; 0; u2(1:data_n-4)] ...
        [0; 0; 0; 0; 0; u2(1:data_n-5)] ...
        [0; 0; 0; 0; 0; 0; u2(1:data_n-6)]];
data = [input output];
data(1:6, :) = [];
input_name = char('y(k-1)','y(k-2)','y(k-3)','y(k-4)','u(k-1)','u(k-2)','u(k-3)','u(k-4)','u(k-5)','u(k-6)');
index = 1:100;
subplot(2,1,1)
plot(index,y2(index),'-',index,y2(index),'o')
ylabel('y(k)','fontsize',10)
subplot(2,1,2)
plot(index,u2(index),'-',index,u2(index),'o')
ylabel('u(k)','fontsize',10)
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The data points were collected at a sampling time of 0.08 seconds. One thousand input-output data
points were collected from the process as the input u(k) was chosen to be a binary random signal
shifting between 3.41 and 6.41 V. The probability of shifting the input at each sample was 0.2. The
data set is available from the System Identification Toolbox, and the above plots show the output
temperature y(k) and input voltage u(t) for the first 100 time steps.

ARX Model Identification

A conventional method is to remove the means from the data and assume a linear model of the form:

y(k)+a1*y(k-1)+...+am*y(k-m)=b1*u(k-d)+...+bn*u(k-d-n+1)

where ai (i = 1 to m) and bj (j = 1 to n) are linear parameters to be determined by least-squares
methods. This structure is called the ARX model and it is exactly specified by three integers [m, n, d].
To find an ARX model for the dryer device, the data set was divided into a training (k = 1 to 300) and
a checking (k = 301 to 600) set. An exhaustive search was performed to find the best combination of
[m, n, d], where each of the integer is allowed to changed from 1 to 10 independently. The best ARX
model thus found is specified by [m, n, d] = [5, 10, 2], with a training RMSE of 0.1122 and a checking
RMSE of 0.0749. The above figure shows the fitting results of the best ARX model.

trn_data_n = 300;
total_data_n = 600;
z = [y2 u2];
z = dtrend(z);
ave = mean(y2);
ze = z(1:trn_data_n,:);
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zv = z(trn_data_n+1:total_data_n,:);
T = 0.08;

% Run through all different models
V = arxstruc(ze,zv,struc(1:10,1:10,1:10));
% Find the best model
nn = selstruc(V,0);
% Time domain plot
th = arx(ze,nn);
th.Ts = 0.08;
u = z(:,2);
y = z(:,1)+ave;
yp = sim(u,th)+ave;

xlbl = 'Time Steps';

subplot(2,1,1)
index = 1:trn_data_n;
plot(index, y(index), index, yp(index), '.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(a) Training Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
disp(['[na nb d] = ' num2str(nn)])
xlabel(xlbl,'fontsize',10)

subplot(2,1,2)
index = (trn_data_n+1):(total_data_n);
plot(index,y(index),index,yp(index),'.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(b) Checking Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel(xlbl,'fontsize',10)

[na nb d] = 5  10   2
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ANFIS Model Identification

The ARX model is inherently linear and the most significant advantage is that we can perform model
structure and parameter identification rapidly. The performance in the above plots appears to be
satisfactory. However, if a better performance level is desired, we might want to resort to a nonlinear
model. In particular, we are going to use a neuro-fuzzy modeling approach, ANFIS, to see if we can
push the performance level with a fuzzy inference system.

To use ANFIS for system identification, the first thing we need to do is select the input. That is, to
determine which variables should be the input arguments to an ANFIS model. For simplicity, we
suppose that there are 10 input candidates (y(k-1), y(k-2), y(k-3), y(k-4), u(k-1), u(k-2), u(k-3), u(k-4),
u(k-5), u(k-6)), and the output to be predicted is y(k). A heuristic approach to input selection is called
sequential forward search, in which each input is selected sequentially to optimize the total squared
error. This can be done by the function seqsrch; the result is shown in the above plot, where 3 inputs
(y(k-1), u(k-3), and u(k-4)) are selected with a training RMSE of 0.0609 and checking RMSE of
0.0604.

trn_data_n = 300;
trn_data = data(1:trn_data_n,:);
chk_data = data(trn_data_n+1:trn_data_n+300,:);
[~,elapsed_time] = seqsrch(3,trn_data,chk_data,input_name); % #ok<*ASGLU>
fprintf('\nElapsed time = %f\n',elapsed_time);
winH1 = gcf;

Selecting input 1 ...
ANFIS model 1: y(k-1) --> trn=0.2043, chk=0.1888
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ANFIS model 2: y(k-2) --> trn=0.3819, chk=0.3541
ANFIS model 3: y(k-3) --> trn=0.5245, chk=0.4903
ANFIS model 4: y(k-4) --> trn=0.6308, chk=0.5977
ANFIS model 5: u(k-1) --> trn=0.8271, chk=0.8434
ANFIS model 6: u(k-2) --> trn=0.7976, chk=0.8087
ANFIS model 7: u(k-3) --> trn=0.7266, chk=0.7349
ANFIS model 8: u(k-4) --> trn=0.6215, chk=0.6346
ANFIS model 9: u(k-5) --> trn=0.5419, chk=0.5650
ANFIS model 10: u(k-6) --> trn=0.5304, chk=0.5601
Currently selected inputs: y(k-1)

Selecting input 2 ...
ANFIS model 11: y(k-1) y(k-2) --> trn=0.1085, chk=0.1024
ANFIS model 12: y(k-1) y(k-3) --> trn=0.1339, chk=0.1283
ANFIS model 13: y(k-1) y(k-4) --> trn=0.1542, chk=0.1461
ANFIS model 14: y(k-1) u(k-1) --> trn=0.1892, chk=0.1734
ANFIS model 15: y(k-1) u(k-2) --> trn=0.1663, chk=0.1574
ANFIS model 16: y(k-1) u(k-3) --> trn=0.1082, chk=0.1077
ANFIS model 17: y(k-1) u(k-4) --> trn=0.0925, chk=0.0948
ANFIS model 18: y(k-1) u(k-5) --> trn=0.1533, chk=0.1531
ANFIS model 19: y(k-1) u(k-6) --> trn=0.1952, chk=0.1853
Currently selected inputs: y(k-1) u(k-4)

Selecting input 3 ...
ANFIS model 20: y(k-1) u(k-4) y(k-2) --> trn=0.0808, chk=0.0822
ANFIS model 21: y(k-1) u(k-4) y(k-3) --> trn=0.0806, chk=0.0836
ANFIS model 22: y(k-1) u(k-4) y(k-4) --> trn=0.0817, chk=0.0855
ANFIS model 23: y(k-1) u(k-4) u(k-1) --> trn=0.0886, chk=0.0912
ANFIS model 24: y(k-1) u(k-4) u(k-2) --> trn=0.0835, chk=0.0843
ANFIS model 25: y(k-1) u(k-4) u(k-3) --> trn=0.0609, chk=0.0604
ANFIS model 26: y(k-1) u(k-4) u(k-5) --> trn=0.0848, chk=0.0867
ANFIS model 27: y(k-1) u(k-4) u(k-6) --> trn=0.0890, chk=0.0894
Currently selected inputs: y(k-1) u(k-3) u(k-4)

Elapsed time = 11.769000
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For input selection, another more computationally intensive approach is to do an exhaustive search
on all possible combinations of the input candidates. The function that performs exhaustive search is
exhsrch, which selects 3 inputs from 10 candidates. However, exhsrch usually involves a significant
amount of computation if all combinations are tried. For instance, if 3 is selected out of 10, the total
number of ANFIS models is C(10, 3) = 120.

Fortunately, for dynamic system identification, we do know that the inputs should not come from
either of the following two sets of input candidates exclusively:

Y = {y(k-1), y(k-2), y(k-3), y(k-4)}

U = {u(k-1), u(k-2), u(k-3), u(k-4), u(k-5), u(k-6)}

A reasonable guess would be to take two inputs from Y and one from U to form the inputs to ANFIS;
the total number of ANFIS models is then C(4,2)*6=36, which is much less. The above plot shows that
the selected inputs are y(k-1), y(k-2) and u(k-3), with a training RMSE of 0.0474 and checking RMSE
of 0.0485, which are better than ARX models and ANFIS via sequential forward search.

group1 = [1 2 3 4];    % y(k-1), y(k-2), y(k-3), y(k-4)
group2 = [1 2 3 4];    % y(k-1), y(k-2), y(k-3), y(k-4)
group3 = [5 6 7 8 9 10];    % u(k-1) through y(k-6)

anfis_n = 6*length(group3);
index = zeros(anfis_n,3);
trn_error = zeros(anfis_n,1);
chk_error = zeros(anfis_n,1);
% ======= Training options
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% Create option set for generating initial FIS.
genOpt = genfisOptions('GridPartition','NumMembershipFunctions',2, ...
                       'InputMembershipFunctionType','gbellmf');
% Create option set for |anfis| command and set options that remain constant
% for different training scenarios.
anfisOpt = anfisOptions('EpochNumber',1,...
                        'InitialStepSize',0.1,...
                        'StepSizeDecreaseRate',0.5,...
                        'StepSizeIncreaseRate',1.5,...
                        'DisplayANFISInformation',0,...
                        'DisplayErrorValues',0,...
                        'DisplayStepSize',0,...
                        'DisplayFinalResults',0);
% ====== Train ANFIS with different input variables
fprintf('\nTrain %d ANFIS models, each with 3 inputs selected from 10 candidates...\n\n',...
    anfis_n);
model = 1;
for i = 1:length(group1)
    for j = i+1:length(group2)
        for k = 1:length(group3)
            in1 = deblank(input_name(group1(i),:));
            in2 = deblank(input_name(group2(j),:));
            in3 = deblank(input_name(group3(k),:));
            index(model, :) = [group1(i) group2(j) group3(k)];
            trn_data = data(1:trn_data_n, [group1(i) group2(j) group3(k) size(data,2)]);
            chk_data = data(trn_data_n+1:trn_data_n+300, [group1(i) group2(j) group3(k) size(data,2)]);
            in_fismat = genfis(trn_data(:,1:end-1),trn_data(:,end),genOpt);
            % Set initial FIS and validation data in option set for ANFIS training.
            anfisOpt.InitialFIS = in_fismat;
            anfisOpt.ValidationData = chk_data;
            [~, t_err, ~, ~, c_err] = anfis(trn_data,anfisOpt);
            trn_error(model) = min(t_err);
            chk_error(model) = min(c_err);
            fprintf('ANFIS model = %d: %s %s %s',model,in1,in2,in3);
            fprintf(' --> trn=%.4f,',trn_error(model));
            fprintf(' chk=%.4f',chk_error(model));
            fprintf('\n');
            model = model+1;
        end
    end
end

% ====== Reordering according to training error
[~, b] = sort(trn_error);
b = flipud(b);        % List according to decreasing trn error
trn_error = trn_error(b);
chk_error = chk_error(b);
index = index(b,:);

% ====== Display training and checking errors
x = (1:anfis_n)';
subplot(2,1,1)
plot(x, trn_error,'-',x,chk_error,'-', ...
     x,trn_error,'o',x,chk_error,'*')
tmp = x(:, ones(1,3))';
X = tmp(:);
tmp = [zeros(anfis_n,1) max(trn_error,chk_error) nan*ones(anfis_n,1)]';
Y = tmp(:);
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hold on
plot(X,Y,'g')
hold off
axis([1 anfis_n -inf inf])
h_gca = gca;
h_gca.XTickLabel = [];

% ====== Add text of input variables
for k = 1:anfis_n
    text(x(k), 0, ...
        [input_name(index(k,1),:) ' ' ...
         input_name(index(k,2),:) ' ' ...
         input_name(index(k,3),:)]);
end
h = findobj(gcf,'type','text');
set(h,'rot',90,'fontsize',11,'hori','right');

drawnow

% ====== Generate input_index for bjtrain.m
[a, b] = min(trn_error);
input_index = index(b,:);
title('Training (Circles) and Checking (Asterisks) Errors','fontsize',10)
ylabel('RMSE','fontsize',10)

Train 36 ANFIS models, each with 3 inputs selected from 10 candidates...

ANFIS model = 1: y(k-1) y(k-2) u(k-1) --> trn=0.0990, chk=0.0962
ANFIS model = 2: y(k-1) y(k-2) u(k-2) --> trn=0.0852, chk=0.0862
ANFIS model = 3: y(k-1) y(k-2) u(k-3) --> trn=0.0474, chk=0.0485
ANFIS model = 4: y(k-1) y(k-2) u(k-4) --> trn=0.0808, chk=0.0822
ANFIS model = 5: y(k-1) y(k-2) u(k-5) --> trn=0.1023, chk=0.0991
ANFIS model = 6: y(k-1) y(k-2) u(k-6) --> trn=0.1021, chk=0.0974
ANFIS model = 7: y(k-1) y(k-3) u(k-1) --> trn=0.1231, chk=0.1206
ANFIS model = 8: y(k-1) y(k-3) u(k-2) --> trn=0.1047, chk=0.1085
ANFIS model = 9: y(k-1) y(k-3) u(k-3) --> trn=0.0587, chk=0.0626
ANFIS model = 10: y(k-1) y(k-3) u(k-4) --> trn=0.0806, chk=0.0836
ANFIS model = 11: y(k-1) y(k-3) u(k-5) --> trn=0.1261, chk=0.1311
ANFIS model = 12: y(k-1) y(k-3) u(k-6) --> trn=0.1210, chk=0.1151
ANFIS model = 13: y(k-1) y(k-4) u(k-1) --> trn=0.1420, chk=0.1353
ANFIS model = 14: y(k-1) y(k-4) u(k-2) --> trn=0.1224, chk=0.1229
ANFIS model = 15: y(k-1) y(k-4) u(k-3) --> trn=0.0700, chk=0.0765
ANFIS model = 16: y(k-1) y(k-4) u(k-4) --> trn=0.0817, chk=0.0855
ANFIS model = 17: y(k-1) y(k-4) u(k-5) --> trn=0.1337, chk=0.1405
ANFIS model = 18: y(k-1) y(k-4) u(k-6) --> trn=0.1421, chk=0.1333
ANFIS model = 19: y(k-2) y(k-3) u(k-1) --> trn=0.2393, chk=0.2264
ANFIS model = 20: y(k-2) y(k-3) u(k-2) --> trn=0.2104, chk=0.2077
ANFIS model = 21: y(k-2) y(k-3) u(k-3) --> trn=0.1452, chk=0.1497
ANFIS model = 22: y(k-2) y(k-3) u(k-4) --> trn=0.0958, chk=0.1047
ANFIS model = 23: y(k-2) y(k-3) u(k-5) --> trn=0.2048, chk=0.2135
ANFIS model = 24: y(k-2) y(k-3) u(k-6) --> trn=0.2388, chk=0.2326
ANFIS model = 25: y(k-2) y(k-4) u(k-1) --> trn=0.2756, chk=0.2574
ANFIS model = 26: y(k-2) y(k-4) u(k-2) --> trn=0.2455, chk=0.2400
ANFIS model = 27: y(k-2) y(k-4) u(k-3) --> trn=0.1726, chk=0.1797
ANFIS model = 28: y(k-2) y(k-4) u(k-4) --> trn=0.1074, chk=0.1157
ANFIS model = 29: y(k-2) y(k-4) u(k-5) --> trn=0.2061, chk=0.2133
ANFIS model = 30: y(k-2) y(k-4) u(k-6) --> trn=0.2737, chk=0.2836
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ANFIS model = 31: y(k-3) y(k-4) u(k-1) --> trn=0.3842, chk=0.3605
ANFIS model = 32: y(k-3) y(k-4) u(k-2) --> trn=0.3561, chk=0.3358
ANFIS model = 33: y(k-3) y(k-4) u(k-3) --> trn=0.2719, chk=0.2714
ANFIS model = 34: y(k-3) y(k-4) u(k-4) --> trn=0.1763, chk=0.1808
ANFIS model = 35: y(k-3) y(k-4) u(k-5) --> trn=0.2132, chk=0.2240
ANFIS model = 36: y(k-3) y(k-4) u(k-6) --> trn=0.3460, chk=0.3601

This window shows ANFIS predictions on both training and checking data sets. Obviously the
performance is better than those of the ARX model.

if ishghandle(winH1),delete(winH1);
end

trn_data = data(1:trn_data_n,[input_index, size(data,2)]);
chk_data = data(trn_data_n+1:600,[input_index, size(data,2)]);

% generate FIS matrix
in_fismat = genfis(trn_data(:,1:end-1),trn_data(:,end));
anfisOpt = anfisOptions('InitialFIS',in_fismat,...
                        'EpochNumber',1,...
                        'InitialStepSize',0.01,...
                        'StepSizeDecreaseRate',0.5,...
                        'StepSizeIncreaseRate',1.5,...
                        'ValidationData',chk_data);
[trn_out_fismat,trn_error,step_size,chk_out_fismat,chk_error] = ...
    anfis(trn_data,anfisOpt);

subplot(2,1,1)
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index = 1:trn_data_n;
plot(index,y(index),index,yp(index),'.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(a) Training Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
disp(['[na nb d] = ' num2str(nn)])
xlabel('Time Steps','fontsize',10)
subplot(2,1,2)
index = (trn_data_n+1):(total_data_n);
plot(index, y(index),index,yp(index),'.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(b) Checking Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel('Time Steps','fontsize',10)

ANFIS info: 
    Number of nodes: 34
    Number of linear parameters: 32
    Number of nonlinear parameters: 18
    Total number of parameters: 50
    Number of training data pairs: 300
    Number of checking data pairs: 300
    Number of fuzzy rules: 8

Start training ANFIS ...

   1      0.0474113      0.0485325

Designated epoch number reached --> ANFIS training completed at epoch 1.

Minimal training RMSE = 0.047411
Minimal checking RMSE = 0.0485325
[na nb d] = 5  10   2
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y_hat = evalfis(chk_out_fismat,data(1:600,input_index));

subplot(2,1,1)
index = 1:trn_data_n;
plot(index,data(index,size(data,2)),'-', ...
     index,y_hat(index),'.')
rmse = norm(y_hat(index)-data(index,size(data,2)))/sqrt(length(index));
title(sprintf(['Training Data (Solid Line) and ANFIS Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel('Time Index','fontsize',10)
ylabel('')

subplot(2,1,2)
index = trn_data_n+1:600;
plot(index,data(index,size(data,2)),'-',index,y_hat(index),'.')
rmse = norm(y_hat(index)-data(index,size(data,2)))/sqrt(length(index));
title(sprintf(['Checking Data (Solid Line) and ANFIS Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel('Time Index','fontsize',10)
ylabel('')
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Conclusion

The table above is a comparison among various modeling approaches. The ARX modeling spends the
least amount of time to reach the worst precision, and the ANFIS modeling via exhaustive search
takes the most amount of time to reach the best precision. In other words, if fast modeling is the goal,
then ARX is the right choice. But if precision is the utmost concern, then we should go with ANFIS,
which is designed for nonlinear modeling and higher precision.
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See Also
anfis | evalfis | genfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
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Gas Mileage Prediction
This example shows how to predict of fuel consumption (miles per gallon) for automobiles, using data
from previously recorded observations.

Introduction

Automobile MPG (miles per gallon) prediction is a typical nonlinear regression problem, in which
several attributes of an automobile's profile information are used to predict another continuous
attribute, the fuel consumption in MPG. The training data is available in the UCI (Univ. of California
at Irvine) Machine Learning Repository and contains data collected from automobiles of various
makes and models.

The table shown above is several observations or samples from the MPG data set. The six input
attributes are no. of cylinders, displacement, horsepower, weight, acceleration, and model year. The
output variable to be predicted is the fuel consumption in MPG. (The automobile's manufacturers and
models in the first column of the table are not used for prediction).

Partitioning Data

The data set is obtained from the original data file 'auto-gas.dat'. The dataset is then partitioned into
a training set (odd-indexed samples) and a checking set (even-indexed samples).

[data,input_name] = loadgas;
trn_data = data(1:2:end,:);
chk_data = data(2:2:end,:);

Input Selection

The function exhsrch performs an exhaustive search within the available inputs to select the set of
inputs that most influence the fuel consumption. The first parameter to the function specifies the
number of input combinations to be tried during the search. Essentially, exhsrch builds an ANFIS
model for each combination and trains it for one epoch and reports the performance achieved. In the
following example, exhsrch is used to determine the one most influential input attribute in
predicting the output.

exhsrch(1,trn_data,chk_data,input_name);

Train 6 ANFIS models, each with 1 inputs selected from 6 candidates...

ANFIS model 1: Cylinder --> trn=4.6400, chk=4.7255
ANFIS model 2: Disp --> trn=4.3106, chk=4.4316
ANFIS model 3: Power --> trn=4.5399, chk=4.1713
ANFIS model 4: Weight --> trn=4.2577, chk=4.0863
ANFIS model 5: Acceler --> trn=6.9789, chk=6.9317
ANFIS model 6: Year --> trn=6.2255, chk=6.1693
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Figure 1: Every input variable's influence on fuel consumption

The left-most input variable in Figure 1 has the least error or in other words the most relevance with
respect to the output.

The plot and results from the function clearly indicate that the input attribute 'Weight' is the most
influential. The training and checking errors are comparable, which implies that there is no
overfitting. This means we can push a little further and explore if we can select more than one input
attribute to build the ANFIS model.

Intuitively, we can simply select Weight and Disp directly since they have the least errors as shown
in the plot. However, this will not necessarily be the optimal combination of two inputs that result in
the minimal training error. To verify this, we can use exhsrch to search for the optimal combination
of 2 input attributes.

input_index = exhsrch(2,trn_data,chk_data,input_name);

Train 15 ANFIS models, each with 2 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp --> trn=3.9320, chk=4.7920
ANFIS model 2: Cylinder Power --> trn=3.7364, chk=4.8683
ANFIS model 3: Cylinder Weight --> trn=3.8741, chk=4.6763
ANFIS model 4: Cylinder Acceler --> trn=4.3287, chk=5.9625
ANFIS model 5: Cylinder Year --> trn=3.7129, chk=4.5946
ANFIS model 6: Disp Power --> trn=3.8087, chk=3.8594
ANFIS model 7: Disp Weight --> trn=4.0271, chk=4.6350
ANFIS model 8: Disp Acceler --> trn=4.0782, chk=4.4890
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ANFIS model 9: Disp Year --> trn=2.9565, chk=3.3905
ANFIS model 10: Power Weight --> trn=3.9310, chk=4.2976
ANFIS model 11: Power Acceler --> trn=4.2740, chk=3.8738
ANFIS model 12: Power Year --> trn=3.3796, chk=3.3505
ANFIS model 13: Weight Acceler --> trn=4.0875, chk=4.0095
ANFIS model 14: Weight Year --> trn=2.7657, chk=2.9953
ANFIS model 15: Acceler Year --> trn=5.6242, chk=5.6481

Figure 2: All two input variable combinations and their influence on fuel consumption

The results from exhsrch indicate that Weight and Year form the optimal combination of two input
attributes. The training and checking errors are getting distinguished, indicating the outset of
overfitting. It may not be prudent to use more than two inputs for building the ANFIS model. We can
test this premise to verify it's validity.

exhsrch(3,trn_data,chk_data,input_name);

Train 20 ANFIS models, each with 3 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp Power --> trn=3.4446, chk=11.5329
ANFIS model 2: Cylinder Disp Weight --> trn=3.6686, chk=4.8922
ANFIS model 3: Cylinder Disp Acceler --> trn=3.6610, chk=5.2384
ANFIS model 4: Cylinder Disp Year --> trn=2.5463, chk=4.9001
ANFIS model 5: Cylinder Power Weight --> trn=3.4797, chk=9.3761
ANFIS model 6: Cylinder Power Acceler --> trn=3.5432, chk=4.4804
ANFIS model 7: Cylinder Power Year --> trn=2.6300, chk=3.6300
ANFIS model 8: Cylinder Weight Acceler --> trn=3.5708, chk=4.8379
ANFIS model 9: Cylinder Weight Year --> trn=2.4951, chk=4.0435
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ANFIS model 10: Cylinder Acceler Year --> trn=3.2698, chk=6.2616
ANFIS model 11: Disp Power Weight --> trn=3.5879, chk=7.4942
ANFIS model 12: Disp Power Acceler --> trn=3.5395, chk=3.9953
ANFIS model 13: Disp Power Year --> trn=2.4607, chk=3.3563
ANFIS model 14: Disp Weight Acceler --> trn=3.6075, chk=4.2318
ANFIS model 15: Disp Weight Year --> trn=2.5617, chk=3.7866
ANFIS model 16: Disp Acceler Year --> trn=2.4149, chk=3.2480
ANFIS model 17: Power Weight Acceler --> trn=3.7884, chk=4.0480
ANFIS model 18: Power Weight Year --> trn=2.4371, chk=3.2852
ANFIS model 19: Power Acceler Year --> trn=2.7276, chk=3.2580
ANFIS model 20: Weight Acceler Year --> trn=2.3603, chk=2.9152

Figure 3: All three input variable combinations and their influence on fuel consumption

The plot shows the result of selecting three inputs, in which Weight, Year, and Acceler are
selected as the best combination of three input variables. However, the minimal training (and
checking) error do not reduce significantly from that of the best two-input model, which indicates
that the newly added attribute Acceler does not improve the prediction much. For better
generalization, we always prefer a model with a simple structure. Therefore we will stick to the two-
input ANFIS for further exploration.

We then extract the selected input attributes from the original training and checking datasets.

close all;
new_trn_data = trn_data(:,[input_index, size(trn_data,2)]);
new_chk_data = chk_data(:,[input_index, size(chk_data,2)]);
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Training ANFIS Model

The function exhsrch only trains each ANFIS for a single epoch in order to be able to quickly find
the right inputs. Now that the inputs are fixed, we can spend more time on ANFIS training (100
epochs).

The genfis function generates a initial FIS from the training data, which is then fine-tuned by
ANFIS to generate the final model.

in_fismat = genfis(new_trn_data(:,1:end-1),new_trn_data(:,end));
anfisOpt = anfisOptions('InitialFIS',in_fismat,'EpochNumber',100,...
                        'StepSizeDecreaseRate',0.5,...
                        'StepSizeIncreaseRate',1.5,...
                        'ValidationData',new_chk_data,...
                        'DisplayANFISInformation',0,...
                        'DisplayErrorValues',0,...
                        'DisplayStepSize',0,...
                        'DisplayFinalResults',0);
[trn_out_fismat,trn_error,step_size,chk_out_fismat,chk_error] = ...
    anfis(new_trn_data,anfisOpt);

ANFIS returns the error with respect to training data and checking data in the list of its output
parameters. The plot of the errors provides useful information about the training process.

[a,b] = min(chk_error);
plot(1:100,trn_error,'g-',1:100,chk_error,'r-',b,a,'ko')
title('Training (green) and checking (red) error curve','fontsize',10)
xlabel('Epoch numbers','fontsize',10)
ylabel('RMS errors','fontsize',10)
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Figure 4: ANFIS training and checking errors

The plot above shows the error curves for 100 epochs of ANFIS training. The green curve gives the
training errors and the red curve gives the checking errors. The minimal checking error occurs at
about epoch 45, which is indicated by a circle. Notice that the checking error curve goes up after 50
epochs, indicating that further training over fits the data and produces worse generalization

ANFIS vs Linear Regression

A good exercise at this point would be to check the performance of the ANFIS model with a linear
regression model.

The ANFIS prediction can be compared against a linear regression model by comparing their
respective RMSE (Root mean square) values against checking data.

% Performing Linear Regression
N = size(trn_data,1);
A = [trn_data(:,1:6) ones(N,1)];
B = trn_data(:,7);
coef = A\B; % Solving for regression parameters from training data

Nc = size(chk_data,1);
A_ck = [chk_data(:,1:6) ones(Nc,1)];
B_ck = chk_data(:,7);
lr_rmse = norm(A_ck*coef-B_ck)/sqrt(Nc);
% Printing results
fprintf('\nRMSE against checking data\nANFIS : %1.3f\tLinear Regression : %1.3f\n',a,lr_rmse);
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RMSE against checking data
ANFIS : 2.978    Linear Regression : 3.444

It can be seen that the ANFIS model outperforms the linear regression model.

Analyzing ANFIS Model

The variable chk_out_fismat represents the snapshot of the ANFIS model at the minimal checking
error during the training process. The input-output surface of the model is shown in the plot below.

chk_out_fismat.Inputs(1).Name = "Weight";
chk_out_fismat.Inputs(2).Name = "Year";
chk_out_fismat.Outputs(1).Name = "MPG";

% Generating the FIS output surface plot
gensurf(chk_out_fismat);

Figure 5: Input-Output surface for trained FIS

The input-output surface shown above is a nonlinear and monotonic surface and illustrates how the
ANFIS model will respond to varying values of 'weight' and 'year'.

Limitations and Cautions

We can see some spurious effects at the far-end corner of the surface. The elevated corner says that
the heavier an automobile is, the more gas-efficient it will be. This is totally counter-intuitive, and it is
a direct result from lack of data.
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plot(new_trn_data(:,1),new_trn_data(:, 2),'bo', ...
     new_chk_data(:,1),new_chk_data(:, 2),'rx')
xlabel('Weight','fontsize',10)
ylabel('Year','fontsize',10)
title('Training (o) and checking (x) data','fontsize',10)

Figure 6: Weight vs Year plot showing lack of data in the upper-right corner

This plot above shows the data distribution. The lack of training data at the upper right corner causes
the spurious ANFIS surface mentioned earlier. Therefore the prediction by ANFIS should always be
interpreted with the data distribution in mind.

See Also
anfis | evalfis | genfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-114
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Data Clustering

• “Fuzzy Clustering” on page 4-2
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
• “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page 4-7
• “Fuzzy C-Means Clustering” on page 4-9
• “Fuzzy C-Means Clustering for Iris Data” on page 4-13
• “Model Suburban Commuting Using Subtractive Clustering” on page 4-17
• “Modeling Traffic Patterns using Subtractive Clustering” on page 4-27
• “Data Clustering Using Clustering Tool” on page 4-38
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Fuzzy Clustering

What Is Data Clustering?
Clustering of numerical data forms the basis of many classification and system modeling algorithms.
The purpose of clustering is to identify natural groupings of data from a large data set to produce a
concise representation of a system's behavior.

Fuzzy Logic Toolbox tools allow you to find clusters in input-output training data. You can use the
cluster information to generate a Sugeno-type fuzzy inference system that best models the data
behavior using a minimum number of rules. The rules partition themselves according to the fuzzy
qualities associated with each of the data clusters. to automatically generate this type of FIS, use the
genfis command.

Fuzzy C-Means Clustering
Fuzzy c-means (FCM) is a data clustering technique wherein each data point belongs to a cluster to
some degree that is specified by a membership grade. This technique was originally introduced by
Jim Bezdek in 1981 [1] as an improvement on earlier clustering methods. It provides a method that
shows how to group data points that populate some multidimensional space into a specific number of
different clusters.

The command line function fcm starts with an initial guess for the cluster centers, which are
intended to mark the mean location of each cluster. The initial guess for these cluster centers is most
likely incorrect. Additionally, fcm assigns every data point a membership grade for each cluster. By
iteratively updating the cluster centers and the membership grades for each data point, fcm
iteratively moves the cluster centers to the right location within a data set. This iteration is based on
minimizing an objective function that represents the distance from any given data point to a cluster
center weighted by that data point's membership grade.

The command line function fcm outputs a list of cluster centers and several membership grades for
each data point. You can use the information returned by fcm to help you build a fuzzy inference
system by creating membership functions to represent the fuzzy qualities of each cluster. To generate
a Sugeno-type fuzzy inference system that models the behavior of input/output data, you can
configure the genfis command to use FCM clustering.

Subtractive Clustering
If you do not have a clear idea how many clusters there should be for a given set of data, subtractive
clustering is a fast, one-pass algorithm for estimating the number of clusters and the cluster centers
for a set of data [2]. The cluster estimates, which are obtained from the subclust function, can be
used to initialize iterative optimization-based clustering methods (fcm) and model identification
methods (like anfis). The subclust function finds the clusters using the subtractive clustering
method.

To generate a Sugeno-type fuzzy inference system that models the behavior of input/output data, you
can configure the genfis command to use subtractive clustering.
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See Also
fcm | genfis | subclust

More About
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
• “Model Suburban Commuting Using Subtractive Clustering” on page 4-17
• “Data Clustering Using Clustering Tool” on page 4-38
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Cluster Quasi-Random Data Using Fuzzy C-Means Clustering
This example shows how FCM clustering works using quasi-random two-dimensional data.

Load the data set and plot it.

load fcmdata.dat
plot(fcmdata(:,1),fcmdata(:,2),'o')

Next, invoke the command-line function, fcm, to find two clusters in this data set until the objective
function is no longer decreasing much at all.

[center,U,objFcn] = fcm(fcmdata,2);

Iteration count = 1, obj. fcn = 8.970479
Iteration count = 2, obj. fcn = 7.197402
Iteration count = 3, obj. fcn = 6.325579
Iteration count = 4, obj. fcn = 4.586142
Iteration count = 5, obj. fcn = 3.893114
Iteration count = 6, obj. fcn = 3.810804
Iteration count = 7, obj. fcn = 3.799801
Iteration count = 8, obj. fcn = 3.797862
Iteration count = 9, obj. fcn = 3.797508
Iteration count = 10, obj. fcn = 3.797444
Iteration count = 11, obj. fcn = 3.797432
Iteration count = 12, obj. fcn = 3.797430
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center contains the coordinates of the two cluster centers, U contains the membership grades for
each of the data points, and objFcn contains a history of the objective function across the iterations.

The fcm function is an iteration loop built on top of the following routines:

• initfcm - initializes the problem
• distfcm - performs Euclidean distance calculation
• stepfcm - performs one iteration of clustering

To view the progress of the clustering, plot the objective function.

figure
plot(objFcn)
title('Objective Function Values')   
xlabel('Iteration Count')
ylabel('Objective Function Value')

Finally, plot the two cluster centers found by the fcm function. The large characters in the plot
indicate cluster centers.

maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2,:) == maxU);
figure
line(fcmdata(index1,1), fcmdata(index1,2), 'linestyle',...
                        'none','marker', 'o','color','g')
line(fcmdata(index2,1),fcmdata(index2,2),'linestyle',...
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                        'none','marker', 'x','color','r')
hold on
plot(center(1,1),center(1,2),'ko','markersize',15,'LineWidth',2)
plot(center(2,1),center(2,2),'kx','markersize',15,'LineWidth',2)

Note: Every time you run this example, the fcm function initializes with different initial conditions.
This behavior swaps the order in which the cluster centers are computed and plotted.

See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
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Adjust Fuzzy Overlap in Fuzzy C-Means Clustering
This example shows how to adjust the amount of fuzzy overlap when performing fuzzy c-means
clustering.

Create a random data set. For reproducibility, initialize the random number generator to its default
value.

rng('default')
data = rand(100,2);

Specify fuzzy partition matrix exponents.

M = [1.1 2.0 3.0 4.0];

The exponent values in M must be greater than 1, with smaller values specifying a lower degree of
fuzzy overlap. In other words, as M approaches 1, the boundaries between the clusters become more
crisp.

For each overlap exponent:

• Cluster the data.
• Classify each data point into the cluster for which it has the highest degree of membership.
• Find the data points with maximum membership values below 0.6. These points have a more

fuzzy classification.
• To quantify the degree of fuzzy overlap, calculate the average maximum membership value across

all data points. A higher average maximum membership value indicates that there is less fuzzy
overlap.

• Plot the clustering results.

for i = 1:4
    % Cluster the data.
    options = [M(i) NaN NaN 0];
    [centers,U] = fcm(data,2,options);
    
    % Classify the data points.
    maxU = max(U);
    index1 = find(U(1,:) == maxU);
    index2 = find(U(2,:) == maxU);
    
    % Find data points with lower maximum membership values.
    index3 = find(maxU < 0.6);
    
    % Calculate the average maximum membership value.
    averageMax = mean(maxU);
    
    % Plot the results.
    subplot(2,2,i)
    plot(data(index1,1),data(index1,2),'ob')
    hold on
    plot(data(index2,1),data(index2,2),'or')
    plot(data(index3,1),data(index3,2),'xk','LineWidth',2)
    plot(centers(1,1),centers(1,2),'xb','MarkerSize',15,'LineWidth',3)
    plot(centers(2,1),centers(2,2),'xr','MarkerSize',15,'LineWidth',3)
    hold off

 Adjust Fuzzy Overlap in Fuzzy C-Means Clustering

4-7



    title(['M = ' num2str(M(i)) ', Ave. Max. = ' num2str(averageMax,3)])
end

A given data point is classified into the cluster for which it has the highest membership value, as
indicated by maxU. A maximum membership value of 0.5 indicates that the point belongs to both
clusters equally. The data points marked with a black x have maximum membership values below
0.6. These points have a greater degree of uncertainty in their cluster membership.

More data points with low maximum membership values indicate a greater degree of fuzzy overlap in
the clustering result. The average maximum membership value, averageMax, provides a quantitative
description of the overlap. An averageMax value of 1 indicates crisp clusters, with smaller values
indicating more overlap.

See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
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Fuzzy C-Means Clustering
This example shows how to perform fuzzy c-means clustering on 2-dimensional data. For an example
that clusters higher-dimensional data, see “Fuzzy C-Means Clustering for Iris Data” on page 4-13.

Fuzzy c-means (FCM) is a data clustering technique in which a data set is grouped into N clusters
with every data point in the dataset belonging to every cluster to a certain degree. For example, a
data point that lies close to the center of a cluster will have a high degree of membership in that
cluster, and another data point that lies far away from the center of a cluster will have a low degree
of membership to that cluster.

The fcm function performs FCM clustering. It starts with a random initial guess for the cluster
centers; that is the mean location of each cluster. Next, fcm assigns every data point a random
membership grade for each cluster. By iteratively updating the cluster centers and the membership
grades for each data point, fcm moves the cluster centers to the correct location within a data set
and, for each data point, finds the degree of membership in each cluster. This iteration minimizes an
objective function that represents the distance from any given data point to a cluster center weighted
by the membership of that data point in the cluster.

Load Data

Load the five sample data sets, and select a data set to cluster. These data sets have different
numbers of clusters and data distributions.

load fcmdata
dataset = ;

Specify FCM Settings

Configure the clustering algorithm settings. For more information on these settings, see fcm. To
obtain accurate clustering results for each data set, try different clustering options.

Specify the number of clusters to compute, which must be greater than 1.

N = ;

Specify the exponent the fuzzy partition matrix, which controls the degree of fuzzy overlap between
clusters. This value must be greater than 1, with smaller values creating more crisp cluster
boundaries. For more information, see “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page
4-7.

exponent = ;

Specify the maximum number of optimization iterations.

maxIterations = ;

Specify the minimum improvement in the objective function between successive iterations. When the
objective function improves by a value below this threshold, the optimization stops. A smaller value
produces more accurate clustering results, but the clustering can take longer to converge.

minImprovement = ;

Specify whether to display the objective function value after each iteration.

displayObjectiveFunction = ;
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Create an option vector for the fcm function using these settings.

options = [exponent maxIterations minImprovement displayObjectiveFunction];

Cluster Data

Cluster the data into N clusters.

[C,U] = fcm(dataset,N,options);

C contains the computed centers for each cluster. U contains the computed fuzzy partition matrix,
which indicates the degree of membership of each data point within each cluster.

Classify each data point into the cluster for which it has the highest degree of membership.

maxU = max(U);
index = cell(N,1);
for i=1:N
    index{i} = find(U(i,:) == maxU);
end

Plot Clustering Results

Plot the clustering results.

figure
hold on
for i=1:N
    plot(dataset(index{i},1),dataset(index{i},2),'o')
    plot(C(i,1),C(i,2),'xk','MarkerSize',15,'LineWidth',3)
end
hold off
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The data points in each cluster are shown in a different colors. The center for each cluster is shown
as a black X.

Plot Data Point Membership Values

Select a cluster for which to plot a membership function surface.

cluster = ;

Obtain the membership function for the selected cluster by fitting a surface to the cluster
membership values for all data points. For more information on interpolating scattered 3-D data, see
griddata.

[X,Y] = meshgrid(0:0.05:1, 0:0.05:1);
Z = griddata(dataset(:,1),dataset(:,2),U(cluster,:),X,Y);
surf(X,Y,Z)
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When you decrease the exponent value, the transition from maximum full cluster membership to
zero cluster membership becomes more steep; that is, the cluster boundary becomes more crisp.

See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
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Fuzzy C-Means Clustering for Iris Data
This example shows how to use fuzzy c-means clustering for the iris data set. This dataset was
collected by botanist Edgar Anderson and contains random samples of flowers belonging to three
species of iris flowers: setosa, versicolor, and virginica. For each of the species, the data set contains
50 observations for sepal length, sepal width, petal length, and petal width.

Load Data

Load the data set from the iris.dat data file.

load iris.dat

Partition the data into three groups named setosa, versicolor, and virginica.

setosaIndex = iris(:,5)==1;
versicolorIndex = iris(:,5)==2;
virginicaIndex = iris(:,5)==3;

setosa = iris(setosaIndex,:);
versicolor = iris(versicolorIndex,:);
virginica = iris(virginicaIndex,:);

Plot Data in 2-D

The iris data contains four dimensions representing sepal length, sepal width, petal length, and petal
width. Plot the data points for each combination of two dimensions.

Characteristics = {'sepal length','sepal width','petal length','petal width'};
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];

for i = 1:6
    x = pairs(i,1); 
    y = pairs(i,2);   
    subplot(2,3,i)
    plot([setosa(:,x) versicolor(:,x) virginica(:,x)],...
         [setosa(:,y) versicolor(:,y) virginica(:,y)], '.')
    xlabel(Characteristics{x})
    ylabel(Characteristics{y})
end
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Setup Parameters

Specify the options for clustering the data using fuzzy c-means clustering. These options are:

• Nc — Number of clusters
• M — Fuzzy partition matrix exponent, which indicates the degree of fuzzy overlap between

clusters. For more information, see “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page
4-7.

• maxIter — Maximum number of iterations. The clustering process stops after this number of
iterations.

• minImprove — Minimum improvement. The clustering process stops when the objective function
improvement between two consecutive iterations is less than this value.

Nc = 3;
M = 2.0;
maxIter = 100;
minImprove = 1e-6;

For more information about these options and the fuzzy c-means algorithm, see fcm.

Compute Clusters

Fuzzy c-means clustering is an iterative process. Initially, the fcm function generates a random fuzzy
partition matrix. This matrix indicates the degree of membership of each data point in each cluster.
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In each clustering iteration, fcm calculates the cluster centers and updates the fuzzy partition matrix
using the calculated center locations. It then computes the objective function value.

Cluster the data, displaying the objective function value after each iteration.

clusteringOptions = [M maxIter minImprove true];
[centers,U] = fcm(iris,Nc,clusteringOptions);

Iteration count = 1, obj. fcn = 28838.424340
Iteration count = 2, obj. fcn = 21010.880067
Iteration count = 3, obj. fcn = 15272.280943
Iteration count = 4, obj. fcn = 11029.756194
Iteration count = 5, obj. fcn = 10550.015503
Iteration count = 6, obj. fcn = 10301.776800
Iteration count = 7, obj. fcn = 9283.793786
Iteration count = 8, obj. fcn = 7344.379868
Iteration count = 9, obj. fcn = 6575.117093
Iteration count = 10, obj. fcn = 6295.215539
Iteration count = 11, obj. fcn = 6167.772051
Iteration count = 12, obj. fcn = 6107.998500
Iteration count = 13, obj. fcn = 6080.461019
Iteration count = 14, obj. fcn = 6068.116247
Iteration count = 15, obj. fcn = 6062.713326
Iteration count = 16, obj. fcn = 6060.390433
Iteration count = 17, obj. fcn = 6059.403978
Iteration count = 18, obj. fcn = 6058.988494
Iteration count = 19, obj. fcn = 6058.814438
Iteration count = 20, obj. fcn = 6058.741777
Iteration count = 21, obj. fcn = 6058.711512
Iteration count = 22, obj. fcn = 6058.698925
Iteration count = 23, obj. fcn = 6058.693695
Iteration count = 24, obj. fcn = 6058.691523
Iteration count = 25, obj. fcn = 6058.690622
Iteration count = 26, obj. fcn = 6058.690247
Iteration count = 27, obj. fcn = 6058.690092
Iteration count = 28, obj. fcn = 6058.690028
Iteration count = 29, obj. fcn = 6058.690001
Iteration count = 30, obj. fcn = 6058.689990
Iteration count = 31, obj. fcn = 6058.689985
Iteration count = 32, obj. fcn = 6058.689983
Iteration count = 33, obj. fcn = 6058.689983

The clustering stops when the objective function improvement is below the specified minimum
threshold.

Plot the computed cluster centers as bold numbers.

for i = 1:6
    subplot(2,3,i);
    for j = 1:Nc
        x = pairs(i,1);
        y = pairs(i,2);
        text(centers(j,x),centers(j,y),int2str(j),'FontWeight','bold');
    end
end
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See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
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Model Suburban Commuting Using Subtractive Clustering
This example shows how to model the relationship between the number of automobile trips generated
from an area and the demographics of the area using the genfis function. Demographic and trip
data are from 100 traffic analysis zones in New Castle County, Delaware. Five demographic factors
are considered: population, number of dwelling units, vehicle ownership, median household income,
and total employment. Hence, the model has five input variables and one output variable.

Load and plot the data.

mytripdata
subplot(2,1,1)
plot(datin)
ylabel('input')
subplot(2,1,2)
plot(datout)
ylabel('output')

The mytripdata command creates several variables in the workspace. Of the original 100 data
points, use 75 data points as training data (datin and datout) and 25 data points as checking data
(as well as for test data to validate the model). The checking data input/output pair variables are
chkdatin and chkdatout.

Generate a model from the data using subtractive clustering using the genfis command.

First, create a genfisOptions option set for subtractive clustering, specifying
ClusterInfluenceRange range property. The ClusterInfluenceRange property indicates the
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range of influence of a cluster when you consider the data space as a unit hypercube. Specifying a
small cluster radius usually yields many small clusters in the data, and results in many rules.
Specifying a large cluster radius usually yields a few large clusters in the data, and results in fewer
rules.

opt = genfisOptions('SubtractiveClustering','ClusterInfluenceRange',0.5);

Generate the FIS model using the training data and the specified options.

fismat = genfis(datin,datout,opt);

The genfis command uses a one-pass method that does not perform any iterative optimization. The
model type for the generated FIS object is a first order Sugeno model with three rules.

Verify the model. Here, trnRMSE is the root mean squared error of the system generated by the
training data.

fuzout = evalfis(fismat,datin);
trnRMSE = norm(fuzout-datout)/sqrt(length(fuzout))

trnRMSE = 0.5276

Next, apply the test data to the FIS to validate the model. In this example, the validation data is used
for both checking and testing the FIS parameters. Here, chkRMSE is the root mean squared error of
the system generated by the validation data.

chkfuzout = evalfis(fismat,chkdatin);
chkRMSE = norm(chkfuzout-chkdatout)/sqrt(length(chkfuzout))

chkRMSE = 0.6179

Plot the output of the model, chkfuzout, against the validation data, chkdatout.

figure
plot(chkdatout)
hold on
plot(chkfuzout,'o')
hold off
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The model output and validation data are shown as circles and solid blue line, respectively. The plot
shows that the model does not perform well on the validation data.

At this point, you can use the optimization capability of anfis to improve the model. First, try using a
relatively short training period (20 epochs) without using validation data, and then test the resulting
FIS model against the testing data.

anfisOpt = anfisOptions('InitialFIS',fismat,'EpochNumber',20,...
                        'InitialStepSize',0.1);
fismat2 = anfis([datin datout],anfisOpt);

ANFIS info: 
    Number of nodes: 44
    Number of linear parameters: 18
    Number of nonlinear parameters: 30
    Total number of parameters: 48
    Number of training data pairs: 75
    Number of checking data pairs: 0
    Number of fuzzy rules: 3

Start training ANFIS ...

   1      0.527607
   2      0.513727
   3      0.492996
   4      0.499985
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   5      0.490585
   6      0.492924
   7      0.48733
Step size decreases to 0.090000 after epoch 7.
   8      0.485036
   9      0.480813
  10      0.475097
Step size increases to 0.099000 after epoch 10.
  11      0.469759
  12      0.462516
  13      0.451177
  14      0.447856
Step size increases to 0.108900 after epoch 14.
  15      0.444357
  16      0.433904
  17      0.433739
  18      0.420408
Step size increases to 0.119790 after epoch 18.
  19      0.420512
  20      0.420275

Designated epoch number reached --> ANFIS training completed at epoch 20.

Minimal training RMSE = 0.420275

After the training is complete, validate the model.

fuzout2 = evalfis(fismat2,datin);
trnRMSE2 = norm(fuzout2-datout)/sqrt(length(fuzout2))

trnRMSE2 = 0.4203

chkfuzout2 = evalfis(fismat2,chkdatin);
chkRMSE2 = norm(chkfuzout2-chkdatout)/sqrt(length(chkfuzout2))

chkRMSE2 = 0.5894

The model has improved a lot with respect to the training data, but only a little with respect to the
validation data. Plot the improved model output obtained using anfis against the testing data.

figure
plot(chkdatout)
hold on
plot(chkfuzout2,'o')
hold off
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The model output and validation data are shown as circles and solid blue line, respectively. This plot
shows that subtractive clustering with genfis can be used as a standalone, fast method for
generating a fuzzy model from data, or as a preprocessor to determine the initial rules for anfis
training. An important advantage of using a clustering method to find rules is that the resultant rules
are more tailored to the input data than they are in a FIS generated without clustering. This result
reduces the problem of an excessive propagation of rules when the input data has a high dimension.

Overfitting can be detected when the checking error starts to increase while the training error
continues to decrease.

To check the model for overfitting, use anfis with validation data to train the model for 200 epochs.

First configure the ANFIS training options by modifying the existing anfisOptions option set.
Specify the epoch number and validation data. Since the number of training epochs is larger,
suppress the display of training information to the Command Window.

anfisOpt.EpochNumber = 200;
anfisOpt.ValidationData = [chkdatin chkdatout];
anfisOpt.DisplayANFISInformation = 0;
anfisOpt.DisplayErrorValues = 0;
anfisOpt.DisplayStepSize = 0;
anfisOpt.DisplayFinalResults = 0;

Train the FIS.

[fismat3,trnErr,stepSize,fismat4,chkErr] = anfis([datin datout],anfisOpt);
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Here,

• fismat3 is the FIS object when the training error reaches a minimum.
• fismat4 is the snapshot FIS object when the validation data error reaches a minimum.
• stepSize is a history of the training step sizes.
• trnErr is the RMSE using the training data
• chkErr is the RMSE using the validation data for each training epoch.

After the training completes, validate the model.

fuzout4 = evalfis(fismat4,datin);
trnRMSE4 = norm(fuzout4-datout)/sqrt(length(fuzout4))

trnRMSE4 = 0.3393

chkfuzout4 = evalfis(fismat4,chkdatin);
chkRMSE4 = norm(chkfuzout4-chkdatout)/sqrt(length(chkfuzout4))

chkRMSE4 = 0.5834

The error with the training data is the lowest thus far, and the error with the validation data is also
slightly lower than before. This result suggests possible overfitting, which occurs when you fit the
fuzzy system to the training data so well that it no longer does a good job of fitting the validation
data. The result is a loss of generality.

View the improved model output. Plot the model output against the checking data.

figure
plot(chkdatout)
hold on
plot(chkfuzout4,'o')
hold off
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The model output and validation data are shown as circles and solid blue line, respectively.

Next, plot the training error, trnErr.

figure
plot(trnErr)
title('Training Error')
xlabel('Number of Epochs')
ylabel('Training Error')
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This plot shows that the training error settles at about the 60th epoch point.

Plot the checking error, chkErr.

figure
plot(chkErr)
title('Checking Error')
xlabel('Number of Epochs')
ylabel('Checking Error')
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The plot shows that the smallest value of the validation data error occurs at the 52nd epoch. After
this point it increases slightly even as anfis continues to minimize the error against the training
data all the way to the 200th epoch. Depending on the specified error tolerance, the plot also
indicates the ability of the model to generalize the test data.

You can also compare the output of fismat2 and fistmat4 against the validation data, chkdatout.

figure
plot(chkdatout)
hold on
plot(chkfuzout4,'ob')
plot(chkfuzout2,'+r')
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See Also
anfis | subclust

More About
• “Fuzzy Clustering” on page 4-2
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Modeling Traffic Patterns using Subtractive Clustering
This example shows how to use subtractive clustering to model traffic patterns in an area based on
the demographics of the area.

The Problem: Understanding Traffic Patterns

In this example we attempt to understand the relationship between the number of automobile trips
generated from an area and the area's demographics. Demographic and trip data were collected from
traffic analysis zones in New Castle County, Delaware. Five demographic factors are considered:
population, number of dwelling units, vehicle ownership, median household income and total
employment.

Hereon, the demographic factors will be addressed as inputs and the trips generated will be
addressed as output. Hence our problem has five input variables (five demographic factors) and one
output variable (number of trips generated).

The Data

Load the input and output variables used for this example into the workspace.

tripdata

Two variables are loaded in the workspace, datin and datout. datin has 5 columns representing
the 5 input variables and datout has 1 column representing the 1 output variable.

subplot(2,1,1)
plot(datin)
legend('population','num. of dwelling units','vehicle ownership',...
    'median household income','total employment')
title('Input Variables','fontsize',10)

subplot(2,1,2)
plot(datout)
legend('num of trips')
title('Output Variable','fontsize',10)
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Figure 1: Input and Output variables

The number of rows in datin and datout, 75, represent the number of observations or samples or
datapoints available. A row in datin, say row 11, constitutes a set of observed values of the 5 input
variables (population, number of dwelling units, vehicle ownership, median household income and
total employment) and the corresponding row, row 11, in datout represents the observed value for
the number of trips generated given the observations made for the input variables.

We will model the relationship between the input variables (demographics) and the output variable
(trips) by first clustering the data. The cluster centers will then be used as a basis to define a fuzzy
inference system (FIS) which can then be used to explore and understand traffic patterns.

Why Clustering and Fuzzy Logic?

Clustering can be a very effective technique to identify natural groupings in data from a large data
set, thereby allowing concise representation of relationships embedded in the data. In this example,
clustering allows us to group traffic patterns into broad categories hence allowing for easier
understandability.

Fuzzy logic is an effective paradigm to handle imprecision. It can be used to take fuzzy or imprecise
observations for inputs and yet arrive at crisp and precise values for outputs. Also, a fuzzy inference
system is a way to build systems without using complex analytical equations.

In this example, fuzzy logic is used to capture the broad categories identified during clustering into a
Fuzzy Inference System (FIS). The FIS will then act as a model that will reflect the relationship
between demographics and auto trips.
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Clustering and fuzzy logic together provide a simple yet powerful means to model the traffic
relationship that we want to study.

Clustering the Data

subclust is the function that implements a clustering technique called subtractive clustering.
Subtractive clustering, [1], is a fast, one-pass algorithm for estimating the number of clusters and the
cluster centers in a dataset.

In this section, we will see how subtractive clustering is performed on a dataset and in the next
section we will explore independently how clustering is used to build a Fuzzy Inference System(FIS).

[C,S] = subclust([datin datout],0.5);

The first argument to the subclust function is the data to be clustered. The second argument to the
function is the radii which marks a cluster's radius of influence in the input space.

The variable C now holds all the centers of the clusters that have been identified by subclust. Each
row of C contains the position of a cluster.

C

C =

    1.8770    0.7630    0.9170   18.7500    1.5650    2.1830
    0.3980    0.1510    0.1320    8.1590    0.6250    0.6480
    3.1160    1.1930    1.4870   19.7330    0.6030    2.3850

In this case, C has 3 rows representing 3 clusters with 6 columns representing the positions of the
clusters in each dimension.

subclust has hence identified 3 natural groupings in the demographic-trip dataset being
considered. The following plot shows how the clusters have been identified in the 'total employment'
and 'trips' dimensions of the input space.

clf
plot(datin(:,5),datout(:,1),'.',C(:,5),C(:,6),'r*')
legend('Data points','Cluster centers','Location','SouthEast')
xlabel('total employment','fontsize',10)
ylabel('num of trips','fontsize',10)
title('Data and Clusters in selected two dimensions of the input space','fontsize',10)
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Figure 2: Cluster centers in the 'total employment' and 'trips' dimensions of the input space

The variable S contains the sigma values that specify the range of influence of a cluster center in
each of the data dimensions. All cluster centers share the same set of sigma values.

S

S =

    1.1621    0.4117    0.6555    7.6139    2.8931    1.4395

S in this case has 6 columns representing the influence of the cluster centers on each of the 6
dimensions.

Generating the Fuzzy Inference System (FIS)

genfis is the function that creates a FIS using subtractive clustering. genfis employs subclust
behind the scenes to cluster the data and uses the cluster centers and their range of influences to
build a FIS which will then be used to explore and understand traffic patterns.

myfis=genfis(datin,datout, ...
    genfisOptions('SubtractiveClustering','ClusterInfluenceRange',0.5));

The first argument is the input variables matrix datin, the second argument is the output variables
matrix datout and the third argument is the radii that should be used while using subclust.
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genfis assigns default names for inputs, outputs and membership functions. For our understanding
it is beneficial to rename the inputs and outputs meaningfully.

Assign names to the inputs and outputs.

myfis.Inputs(1).Name = "population";
myfis.Inputs(2).Name = "dwelling units";
myfis.Inputs(3).Name = "num vehicles";
myfis.Inputs(4).Name = "income";
myfis.Inputs(5).Name = "employment";
myfis.Outputs(1).Name = "num of trips";

Understanding the Clusters-FIS Relationship

An FIS is composed of inputs, outputs, and rules. Each input and output can have any number of
membership functions. The rules dictate the behavior of the fuzzy system based on inputs, outputs
and membership functions. genfis constructs the FIS in an attempt to capture the position and
influence of each cluster in the input space.

myfis is the FIS that genfis has generated. Since the dataset has 5 input variables and 1 output
variable, genfis constructs a FIS with 5 inputs and 1 output. Each input and output has as many
membership functions as the number of clusters that subclust has identified. As seen previously, for
the current dataset subclust identified 3 clusters. Therefore each input and output will be
characterized by 3 membership functions. Also, the number of rules equals the number of clusters
and hence 3 rules are created.

We can now probe the FIS to understand how the clusters got converted internally into membership
functions and rules using the Fuzzy Logic Designer app.

fuzzyLogicDesigner(myfis)
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Figure 3: The graphical editor for building Fuzzy Inference Systems (FIS)

As can be seen, the FIS has 5 inputs and 1 output with the inputs mapped to the outputs through a
rule base (white box in the figure).

Let's now try to analyze how the cluster centers and the membership functions are related.

mfedit(myfis)
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Figure 4: The graphical membership function editor

mfedit(myfis) launches the graphical membership function editor. It can also be launched by
clicking on the inputs or the outputs in the FIS editor launched by fuzzyLogicDesigner.

Notice that all the inputs and outputs have exactly 3 membership functions. The 3 membership
functions represent the 3 clusters that were identified by subclust.

Each input in the FIS represents an input variable in the input dataset datin and each output in the
FIS represents an output variable in the output dataset datout.

By default, the first membership function, in1cluster1, of the first input population would be
selected in the membership function editor. Notice that the membership function type is gaussmf
(Gaussian type membership function) and the parameters of the membership function are [1.162
1.877], where 1.162 represents the spread coefficient of the Gaussian curve and 1.877 represents
the center of the Gaussian curve. in1cluster1 captures the position and influence of the first
cluster for the input variable population. (C(1,1)=1.877, S(1)=1.1621 )

Similarly, the position and influence of the other 2 clusters for the input variable population are
captured by the other two membership functions in1cluster2 and in1cluster3.
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The rest of the 4 inputs follow the exact pattern mimicking the position and influence of the 3 clusters
along their respective dimensions in the dataset.

Now, let's explore how the fuzzy rules are constructed.

ruleedit(myfis)

Figure 5: The graphical rule editor

ruleedit is the graphical fuzzy rule editor. As you can notice, there are exactly three rules. Each
rule attempts to map a cluster in the input space to a cluster in the output space.

The first rule can be explained simply as follows. If the inputs to the FIS, population, dwelling
units, num vehicles, income, and employment, strongly belong to their respective cluster1
membership functions then the output, num of trips, must strongly belong to its cluster1
membership function. The (1) at the end of the rule is to indicate that the rule has a weight or an
importance of "1". Weights can take any value between 0 and 1. Rules with lesser weights will count
for less in the final output.

The significance of the rule is that it succinctly maps cluster 1 in the input space to cluster 1 in the
output space. Similarly, the other two rules map cluster 2 and cluster 3 in the input space to cluster 2
and cluster 3 in the output space.
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If a datapoint closer to the first cluster, or in other words having strong membership to the first
cluster, is fed as input to myfis then rule1 will fire with more firing strength than the other two
rules. Similarly, an input with strong membership to the second cluster will fire the second rule will
with more firing strength than the other two rules and so on.

The output of the rules (firing strengths) are then used to generate the output of the FIS through the
output membership functions.

The one output of the FIS, num of trips, has 3 linear membership functions representing the 3
clusters identified by subclust. The coefficients of the linear membership functions though are not
taken directly from the cluster centers. Instead, they are estimated from the dataset using least
squares estimation technique.

All 3 membership functions in this case will be of the form a*population + b*dwelling units
+ c*num vehicles + d*income + e*employment + f, where a, b, c, d, e and f represent the
coefficients of the linear membership function. Click on any of the num of trips membership
functions in the membership function editor to observe the parameters of these linear membership
functions.

Using the FIS for Data Exploration

You can now use the FIS that has been constructed to understand the underlying dynamics of
relationship being modeled.

surfview(myfis)

Figure 6: Input-Output Surface viewer
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surfview is the surface viewer that helps view the input-output surface of the fuzzy system. In other
words, this tool simulates the response of the fuzzy system for the entire range of inputs that the
system is configured to work for. Thereafter, the output or the response of the FIS to the inputs are
plotted against the inputs as a surface. This visualization is very helpful to understand how the
system is going to behave for the entire range of values in the input space.

In the plot above the surface viewer shows the output surface for two inputs population and num
of dwelling units. As you can see the number of auto trips increases with increase in population
and dwelling units, which sounds very rational. You can change the inputs in the X and Y drop-down
boxes to observe the output surface with respect to the inputs you choose.

ruleview(myfis)

Figure 7: Rule viewer that simulates the entire fuzzy inference process

ruleview is the graphical simulator for simulating the FIS response for specific values of the input
variables. Now, having built the fuzzy system, if we want to understand how many trips will occur for
a demographic setup, say an area with a particular population, a certain number of dwelling units
and so on, this tool will help you simulate the FIS response for the input of your choice.
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Another feature of this GUI tool is, it gives you a snapshot of the entire fuzzy inference process, right
from how the membership functions are being satisfied in every rule to how the final output is being
generated through defuzzification.

Conclusion

This example has attempted to convey how clustering and fuzzy logic can be employed as effective
techniques for data modeling and analysis.

Fuzzy logic has also found various applications in other areas of technology like non-linear control,
automatic control, signal processing, system identification, pattern recognition, time series
prediction, data mining, financial applications etc.

Reference

[1] - S. Chiu, "Fuzzy Model Identification Based on Cluster Estimation," J. of Intelligent & Fuzzy
Systems, Vol. 2, No. 3, 1994.

See Also
anfis | subclust

More About
• “Fuzzy Clustering” on page 4-2
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Data Clustering Using Clustering Tool
The Clustering tool implements the fuzzy data clustering functions fcm and subclust, and lets you
perform clustering on data. For more information on the clustering methods, see “Fuzzy Clustering”
on page 4-2.

To open the tool, at the MATLAB command line, type:

findcluster

Use the Clustering tool to perform the following tasks:

1 Load and plot the data.
2 Perform the clustering.
3 Save the cluster center.

Access the online help topics by clicking Info or using the Help menu.

Load and Plot Data
To load a data set, perform either of the following actions:
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• Click Load Data, and select the file containing the data.
• Open the Clustering Tool with a data set directly by calling findcluster with the data set as an

input argument.

For example, enter:

findcluster('clusterdemo.dat')

The data set file must have the extension .dat. Each line of the data set file contains one data point.
For example, if you have 5-dimensional data with 100 data points, the file contains 100 lines, and
each line contains five values.

The Clustering tool works on multidimensional data sets, but displays only two of those dimensions
on the plot. To select other dimensions in the data set for plotting, you can use the drop-down lists
under X-axis and Y-axis.

Cluster Data
To start clustering the data:

1 Choose the clustering function fcm (fuzzy C-Means clustering) or subtractiv (subtractive
clustering) from the drop-down menu under Methods.

2 Set options for:

• Fuzzy c-means clustering using the Cluster Num, Max Iteration, Min, and Exponent fields.
For information on these options, see fcm.

• Subtractive clustering using the Influence Range, Squash, Aspect Ratio, and Reject Ratio
fields. For information on these options, see subclust.

3 Cluster the data by clicking Start.

Once the clustering is complete, the cluster centers appear in black as shown in the next figure.
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Tip Using the Clustering tool, you can obtain only the computed cluster centers. To obtain additional
information for:

• Fuzzy c-means clustering, such as the fuzzy partition matrix, cluster the data using fcm.
• Subtractive clustering, such as the range of influence in each data dimension, cluster the data

using subclust.

To use the same clustering data with either fcm or subclust, first load the data file into the
MATLAB workspace. For example, at the MATLAB command line, type:

load clusterdemo.dat

Save Cluster Centers
To save the cluster centers, click Save Center.

See Also
fcm | findcluster | subclust
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More About
• “Fuzzy Clustering” on page 4-2
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Fuzzy Logic in Simulink

• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Water Level Control in a Tank” on page 5-11
• “Temperature Control in a Shower” on page 5-17
• “Implement Fuzzy PID Controller in Simulink Using Lookup Table” on page 5-24
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Simulate Fuzzy Inference Systems in Simulink
You can simulate a fuzzy inference system (FIS) in Simulink using either the Fuzzy Logic Controller
or Fuzzy Logic Controller with Ruleviewer blocks. Alternatively, you can evaluate fuzzy systems at the
command line using evalfis.

Using the Fuzzy Logic Controller, you can simulate traditional type-1 fuzzy inference systems
(mamfis and sugfis) and type-2 fuzzy inference systems (mamfistype2 and sugfistype2). The
Fuzzy Logic Controller with Ruleviewer block supports only type-1 systems.

For more information on creating fuzzy inference systems, see “Build Fuzzy Systems Using Fuzzy
Logic Designer” on page 2-14 and “Build Fuzzy Systems at the Command Line” on page 2-31.

Simulate Fuzzy Inference System
Once you have implemented a fuzzy inference system using Fuzzy Logic Designer, using Neuro-
Fuzzy Designer, or at the command line, you can simulate the system in Simulink.

For this example, you control the level of water in a tank using a fuzzy inference system implemented
using a Fuzzy Logic Controller block. Open the sltank model.

open_system('sltank')

For this system, you control the water that flows into the tank using a valve. The outflow rate depends
on the diameter of the output pipe, which is constant, and the pressure in the tank, which varies with
water level. Therefore, the system has nonlinear characteristics.
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The two inputs to the fuzzy system are the water level error, level, and the rate of change of the
water level, rate. The output of the fuzzy system is the rate at which the control valve is opening or
closing, valve.

To implement a fuzzy inference system, specify the FIS name parameter of the Fuzzy Logic
Controller block as the name of a FIS object in the MATLAB® workspace. In this example, the block
uses the mamfis object tank.

For more information on this system, see “Water Level Control in a Tank” on page 5-11.

As a first attempt to control the water level, set the following rules in the FIS. These rules adjust the
valve based on only the water level error.

• If the water level is okay, then do not adjust the valve.
• If the water level is low, then open the valve quickly.
• If the water level is high, then close the valve quickly.

Specify the rules by creating a vector of fisrule objects and assigning it to the Rules property of
the tank FIS object.

rule1 = "If level is okay then valve is no_change";
rule2 = "If level is low then valve is open_fast";
rule3 = "If level is high then valve is close_fast";
rules = [rule1 rule2 rule3];
tank.Rules = fisrule(rules);

Simulate the model, and view the water level.

open_system('sltank/Comparison')
sim('sltank',100)
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These rules are insufficient for controlling the system, since the water level oscillates around the
setpoint.
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To reduce the oscillations, add two more rules to the system. These rules adjust the valve based on
the rate of change of the water level when the water level is near the setpoint.

• If the water level is okay and increasing, then close the valve slowly.
• If the water level is okay and decreasing, then open the valve slowly.

To add these rules, use the addRule function.

rule4 = "If level is okay and rate is positive then valve is close_slow";
rule5 = "If level is okay and rate is negative then valve is open_slow";
newRules = [rule4 rule5];
tank = addRule(tank,newRules);

Simulate the model.

sim('sltank',100)
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The water level now tracks the setpoint without oscillating.

You can also simulate fuzzy systems using the Fuzzy Logic Controller with Ruleviewer block. The
sltankrule model is the same as the sltank model, except that it uses the Fuzzy Logic Controller
with Ruleviewer block.

open_system('sltankrule')
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During simulation, this block displays the Rule Viewer from the Fuzzy Logic Designer app.

sim('sltankrule',100)
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If you pause the simulation, you can examine the FIS behavior by manually adjusting the input
variable values in the Rule Viewer, and observing the inference process and output.

You can also access the Fuzzy Logic Designer editors from the Rule Viewer. From the Rule Viewer,
you can then adjust the parameters of your fuzzy system using these editors, and export the updated
system to the MATLAB workspace. To simulate the updated FIS, restart the simulation. For more
information on using these editors, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-
14.

Access Intermediate Fuzzy Inference Results
You can access intermediate fuzzy inference results using the Fuzzy Logic Controller block. You can
use this data to visualize the fuzzy inference process or troubleshoot the performance of your FIS. To
access this data, enable the corresponding parameters in the block, and connect signals to the
corresponding output ports.

Block Parameter Description Output Port
Fuzzified Inputs Fuzzified input values, obtained by evaluating the input

membership functions of each rule at the current input
values.

fi

Rule firing strengths Rule firing strengths, obtained by evaluating the
antecedent of each rule.

rfs

Rule outputs Rule outputs, obtained by evaluating the consequent of
each rule.

ro

Aggregated outputs Aggregate output for each output variable, obtained by
combining the corresponding outputs from all the rules.

ao

For more information, see Fuzzy Logic Controller.
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Simulation Modes
The Fuzzy Logic Controller block has the following two simulation modes:

• Interpreted execution — Simulate fuzzy systems using precompiled MEX files. Using this
option reduces the initial compilation time of the model.

• Code generation — Simulate fuzzy system without precompiled MEX files. Use this option
when simulating fuzzy systems for code generation applications. Doing so simulates your system
using the same code path used for generated code.

To select a simulation mode, set the Simulate using parameter of the block. By default, the block
uses Interpreted execution mode for simulation.

Map Command-Line Functionality to Fuzzy Logic Controller Block
The parameters and ports of the Fuzzy Logic Controller block map to the input and output arguments
of evalfis or the properties of evalfisOptions. The following table shows the block parameters
and ports that map to evalfis arguments.

evalfis Argument Description Block Parameter or Port
fis Fuzzy inference system FIS name
input, when a single row Input variable values in
output, when a single row Output variable values out
fuzzifiedIn Fuzzified inputs fi
ruleOut Rule outputs ro
aggregateOut Aggregated outputs ao
ruleFiring Rule firing strengths rfs

The following table shows the block parameters that map to evalfisOptions properties.

evalfisOptions Property Description Block Parameter or Port
NumSamplePoints Number of points in output

fuzzy sets
Number of samples for
output discretization

OutOfRangeInputValueMess
age

Diagnostic message behavior
when an input is out of range

Out of range input value

NoRuleFiredMessage Diagnostic message behavior
when no rules fire

No rule fired

EmptyOutputFuzzySetMessa
ge

Diagnostic message behavior
when an output fuzzy set is
empty

Empty output fuzzy set

The remaining parameters of the Fuzzy Logic Controller block do not map to arguments of evalfis.
Also, unlike the Fuzzy Logic Controller block, evalfis does not support fixed-point data for
simulation or code generation.
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See Also
Blocks
Fuzzy Logic Controller | Fuzzy Logic Controller with Ruleviewer

More About
• “Temperature Control in a Shower” on page 5-17
• “Water Level Control in a Tank” on page 5-11
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Water Level Control in a Tank
This model shows how to implement a fuzzy inference system (FIS) in a Simulink® model.

Simulink Model

This model controls the level of water in a tank using a fuzzy inference system implemented using a
Fuzzy Logic Controller block. Open the sltank model.

open_system('sltank')

For this system, you control the water that flows into the tank using a valve. The outflow rate depends
on the diameter of the output pipe, which is constant, and the pressure in the tank, which varies with
water level. Therefore, the system has nonlinear characteristics.

Fuzzy Inference System

The fuzzy system is defined in a FIS object, tank, in the MATLAB® workspace. For more information
on how to specify a FIS in a Fuzzy Logic Controller block, see Fuzzy Logic Controller.

The two inputs to the fuzzy system are the water level error, level, and the rate of change of the
water level, rate. Each input has three membership functions.

figure
plotmf(tank,'input',1)
figure
plotmf(tank,'input',2)
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The output of the fuzzy system is the rate at which the control valve is opening or closing, valve,
which has five membership functions.

plotmf(tank,'output',1)
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Due to the diameter of the outflow pipe, the water tank in this system empties more slowly than it fills
up. To compensate for this imbalance, the close_slow and open_slow valve membership functions
are not symmetrical. A PID controller does not support such asymmetry.

The fuzzy system has five rules. The first three rules adjust the valve based on only the water level
error.

• If the water level is okay, then do not adjust the valve.
• If the water level is low, then open the valve quickly.
• If the water level is high, then close the valve quickly.

The other two rules adjust the valve based on the rate of change of the water level when the water
level is near the setpoint.

• If the water level is okay and increasing, then close the valve slowly.
• If the water level is okay and decreasing, then open the valve slowly.

tank.Rules

ans = 

  1x5 fisrule array with properties:

    Description
    Antecedent
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    Consequent
    Weight
    Connection

  Details:
                              Description                      
         ______________________________________________________

    1    "level==okay => valve=no_change (1)"                  
    2    "level==low => valve=open_fast (1)"                   
    3    "level==high => valve=close_fast (1)"                 
    4    "level==okay & rate==positive => valve=close_slow (1)"
    5    "level==okay & rate==negative => valve=open_slow (1)" 

In this model, you can also control the water level using a PID controller. To switch to the PID
controller, set the const block to a value greater than or equal to zero.

Simulation

The model simulates the controller with periodic changes in the setpoint of the water level. Run the
simulation.

sim('sltank',100)
open_system('sltank/Comparison')
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The water level tracks the setpoint well. You can adjust the performance of the controller by
modifying the rules of the tank FIS. For example, if you remove the last two rules, which are
analogous to a derivative control action, the controller performs poorly, with large oscillations in the
water level.

See Also
Blocks
Fuzzy Logic Controller | Fuzzy Logic Controller with Ruleviewer

More About
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Temperature Control in a Shower” on page 5-17
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Temperature Control in a Shower
This model shows how to implement a fuzzy inference system (FIS) in a Simulink® model.

Simulink Model

The model controls the temperature of a shower using a fuzzy inference system implemented using a
Fuzzy Logic Controller block. Open the shower model.

open_system('shower')

For this system, you control the flow rate and temperature of a shower by adjusting hot and cold
water valves.

Since there are two inputs for the fuzzy system, the model concatenates the input signals using a
Mux block. The output of the Mux block is connected to the input of the Fuzzy Logic Controller block.
Similarly, the two output signals are obtained using a Demux block connected to the controller.

Fuzzy Inference System

The fuzzy system is defined in a FIS object, fisMatrix, in the MATLAB® workspace. For more
information on how to specify a FIS in a Fuzzy Logic Controller block, see Fuzzy Logic Controller.

The two inputs to the fuzzy system are the temperature error, temp, and the flow rate error, flow.
Each input has three membership functions.

figure
plotmf(fisMatrix,'input',1)
figure
plotmf(fisMatrix,'input',2)
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The two outputs of the fuzzy system are the rate at which the cold and hot water valves are opening
or closing, cold and hot respectively. Each output has five membership functions.

figure
plotmf(fisMatrix,'output',1)
figure
plotmf(fisMatrix,'output',2)
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The fuzzy system has nine rules for adjusting the hot and cold water valves based on the flow and
temperature errors. The rules adjust the total flow rate based on the flow error, and adjust the
relative hot and cold flow rates based on the temperature error.

fisMatrix.Rules

ans = 

  1x9 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                                  Description                          
         ______________________________________________________________

    1    "temp==cold & flow==soft => cold=openSlow, hot=openFast (1)"  
    2    "temp==cold & flow==good => cold=closeSlow, hot=openSlow (1)" 
    3    "temp==cold & flow==hard => cold=closeFast, hot=closeSlow (1)"
    4    "temp==good & flow==soft => cold=openSlow, hot=openSlow (1)"  
    5    "temp==good & flow==good => cold=steady, hot=steady (1)"      
    6    "temp==good & flow==hard => cold=closeSlow, hot=closeSlow (1)"
    7    "temp==hot & flow==soft => cold=openFast, hot=openSlow (1)"   
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    8    "temp==hot & flow==good => cold=openSlow, hot=closeSlow (1)"  
    9    "temp==hot & flow==hard => cold=closeSlow, hot=closeFast (1)" 

Simulation

The model simulates the controller with periodic changes in the setpoints of the water temperature
and flow rate.

set_param('shower/flow scope','Open','on','Ymin','0','Ymax','1')
set_param('shower/temp scope','Open','on','Ymin','15','Ymax','30')
sim('shower',50)

The flow rate tracks the setpoint well. The temperature also tracks its setpoint, though there are
temperature deviations when the controller adjusts to meet a new flow setpoint.

5 Fuzzy Logic in Simulink

5-22



bdclose('shower') % Closing model also clears its workspace variables.

See Also
Blocks
Fuzzy Logic Controller

More About
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Water Level Control in a Tank” on page 5-11

 Temperature Control in a Shower

5-23



Implement Fuzzy PID Controller in Simulink Using Lookup Table
This example shows how to implement a fuzzy inference system for nonlinear PID control using a 2-D
Lookup Table block.

Overview

A fuzzy inference system (FIS) maps given inputs to outputs using fuzzy logic. For example, a typical
mapping of a two-input, one-output fuzzy controller can be depicted in a 3-D plot. The plot is often
referred to as a control surface plot.

For control applications, typical FIS inputs are the error (e(k)) and change of error (e(k)-e(k-1)),
E and CE respectively in the control surface plot. The FIS output is the control action inferred from
the fuzzy rules, u in the surface plot. Fuzzy Logic Toolbox™ provides commands and apps for
designing a FIS for a desired control surface. You can then simulate the designed FIS using the Fuzzy
Logic Controller block in Simulink®.

You can often approximate nonlinear control surfaces using lookup tables to simplify the generated
code and improve execution speed. For example, you can replace a Fuzzy Logic Controller block in
Simulink with a set of Lookup Table blocks, one table for each output defined in the FIS. You can
compute the data used in the lookup table using the evalfis command.

For this example, you design a nonlinear fuzzy PID controller for a plant in Simulink. The plant is a
single-input, single-output system in discrete time. The design goal is to achieve good reference
tracking performance.
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Ts = 0.1;
Plant = c2d(zpk([],[-1 -3 -5],1),Ts);

You also implement the fuzzy inference system using a 2-D lookup table that approximates the control
surface and achieves the same control performance.

Fuzzy PID Controller Structure

The fuzzy controller in this example is in the feedback loop and computes PID-like actions using fuzzy
inference. Open the Simulink model.

open_system('sllookuptable')

The fuzzy PID controller uses a parallel structure as shown in the Fuzzy PID subsystem. For more
information, see [1]. The controller is a combination of fuzzy PI control and fuzzy PD control.

open_system('sllookuptable/Fuzzy PID')
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The fuzzy PID controller uses the change of the output -(y(k)-y(k-1)), instead of change of error
e(k)-e(k-1), as the second input signal to the FIS. Doing so prevents the step change in reference
signal from directly triggering the derivative action. The two gain blocks, GCE and GCU, in the feed
forward path from r to u, ensure that the error signal e is used in proportional action when the fuzzy
PID controller is linear.

Design Conventional PID Controller

The conventional PID controller in this example is a discrete-time PID controller with Backward Euler
numerical integration in both the integral and derivative actions. The controller gains are Kp, Ki, and
Kd.

open_system('sllookuptable/Conventional PID')

Similar to the fuzzy PID controller, the input signal to the derivative action is -y(k), instead of e(k).

You can tune the PID controller gains manually or using tuning formulas. In this example, obtain the
initial PID design using the pidtune command from Control System Toolbox™.

Define the PID structure, tune the controller, and extract the PID gains.

C0 = pid(1,1,1,'Ts',Ts,'IF','B','DF','B');
C = pidtune(Plant,C0)
[Kp,Ki,Kd] = piddata(C);

C =
 
             Ts*z           z-1 
  Kp + Ki * ------ + Kd * ------
              z-1          Ts*z 

  with Kp = 30.6, Ki = 25.2, Kd = 9.02, Ts = 0.1
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Sample time: 0.1 seconds
Discrete-time PID controller in parallel form.

Design Equivalent Linear Fuzzy PID Controller

By configuring the FIS and selecting the four scaling factors, you can obtain a linear fuzzy PID
controller that reproduces the control performance of the conventional PID controller.

First, configure the fuzzy inference system so that it produces a linear control surface from inputs E
and CE to output u. The FIS settings are based on design choices described in [2]:

• Use a Sugeno style fuzzy inference system with default inference methods.
• Normalize the ranges of both inputs to [-10 10].
• Use triangular input membership functions that overlap their neighbor functions at a membership

value of 0.5.
• Use an output range of [-20 20].
• Use constant output membership functions.

Construct the fuzzy inference system.

FIS = sugfis;

Define input variable E.

FIS = addInput(FIS,[-10 10],'Name','E');
FIS = addMF(FIS,'E','trimf',[-20 -10 0],'Name','Negative');
FIS = addMF(FIS,'E','trimf',[-10 0 10],'Name','Zero');
FIS = addMF(FIS,'E','trimf',[0 10 20],'Name','Positive');

Define input CE.

FIS = addInput(FIS,[-10 10],'Name','CE');
FIS = addMF(FIS,'CE','trimf',[-20 -10 0],'Name','Negative');
FIS = addMF(FIS,'CE','trimf',[-10 0 10],'Name','Zero');
FIS = addMF(FIS,'CE','trimf',[0 10 20],'Name','Positive');

Define output variable u with constant membership functions.

FIS = addOutput(FIS,[-20 20],'Name','u');
FIS = addMF(FIS,'u','constant',-20,'Name','LargeNegative');
FIS = addMF(FIS,'u','constant',-10,'Name','SmallNegative');
FIS = addMF(FIS,'u','constant',0,'Name','Zero');
FIS = addMF(FIS,'u','constant',10,'Name','SmallPositive');
FIS = addMF(FIS,'u','constant',20,'Name','LargePositive');

Define the following fuzzy rules:

1 If E is negative and CE is negative, then u is -20.
2 If E is negative and CE is zero, then u is -10.
3 If E is negative and CE is positive then u is 0.
4 If E is zero and CE is negative, then u is -10.
5 If E is zero and CE is zero, then u is 0.

 Implement Fuzzy PID Controller in Simulink Using Lookup Table

5-27



6 If E is zero and CE is positive, then u is 10.
7 If E is positive and CE is negative, then u is 0.
8 If E is positive and CE is zero, then u is 10.
9 If E is positive and CE is positive, then u is 20.

ruleList = [1 1 1 1 1;   % Rule 1
            1 2 2 1 1;   % Rule 2
            1 3 3 1 1;   % Rule 3
            2 1 2 1 1;   % Rule 4
            2 2 3 1 1;   % Rule 5
            2 3 4 1 1;   % Rule 6
            3 1 3 1 1;   % Rule 7
            3 2 4 1 1;   % Rule 8
            3 3 5 1 1];  % Rule 9
FIS = addRule(FIS,ruleList);

While you implement your FIS from the command line in this example, you can alternatively build
your FIS using the Fuzzy Logic Designer app.

Plot the linear control surface.

gensurf(FIS)

Determine scaling factors GE, GCE, GCU, and GU from the Kp, Ki, and Kd gains of by the conventional
PID controller. Comparing the expressions of the traditional PID and the linear fuzzy PID, the
variables are related as follows:
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• Kp = GCU * GCE + GU * GE
• Ki = GCU * GE
• Kd = GU * GCE

Assume that the maximum reference step is 1, and thus the maximum error e is 1. Since the input
range of E is [-10 10], set GE to 10. You can then solve for GCE, GCU, and GU.

GE = 10;
GCE = GE*(Kp-sqrt(Kp^2-4*Ki*Kd))/2/Ki;
GCU = Ki/GE;
GU = Kd/GCE;

Implement Fuzzy Inference System Using 2-D Lookup Table

The fuzzy controller block has two inputs (E and CE) and one output (u). Therefore, you can replace
the fuzzy system using a 2-D lookup table.

To generate a 2-D lookup table from your FIS, loop through the input universe, and compute the
corresponding output values using evalfis. Since the control surface is linear, you can use a few
sample points for each input variable.

Step = 10;
E = -10:Step:10;
CE = -10:Step:10;
N = length(E);
LookUpTableData = zeros(N);
for i=1:N
   for j=1:N
      % Compute output u for each combination of sample points.
      LookUpTableData(i,j) = evalfis(FIS,[E(i) CE(j)]);
   end
end

View the fuzzy PID controller using 2-D lookup table.

open_system('sllookuptable/Fuzzy PID using Lookup Table')

The only difference compared to the Fuzzy PID controller is that the Fuzzy Logic Controller block is
replaced with a 2-D Lookup Table block.

When the control surface is linear, a fuzzy PID controller using the 2-D lookup table produces the
same result as one using the Fuzzy Logic Controller block.
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Simulate Closed-Loop Response in Simulink

The Simulink model simulates three different controller subsystems, namely Conventional PID, Fuzzy
PID, and Fuzzy PID using Lookup Table, to control the same plant.

Run the simulation. To compare the closed-loop responses to a step reference change, open the
scope. As expected, all three controllers produce the same result.

sim('sllookuptable')
open_system('sllookuptable/Scope')

Design Fuzzy PID Controller with Nonlinear Control Surface

Once you have a linear fuzzy PID controller, you can obtain a nonlinear control surface by adjusting
your FIS settings, such as its style, membership functions, and rule base.

For this example, design a steep control surface using a Sugeno-type FIS. Each input set has two
terms (Positive and Negative), and the number of rules is reduced to four.

Construct the FIS.

FIS = sugfis;

Define input E.

FIS = addInput(FIS,[-10 10],'Name','E');
FIS = addMF(FIS,'E','gaussmf',[7 -10],'Name','Negative');
FIS = addMF(FIS,'E','gaussmf',[7 10],'Name','Positive');

Define input CE.

FIS = addInput(FIS,[-10 10],'Name','CE');
FIS = addMF(FIS,'CE','gaussmf',[7 -10],'Name','Negative');
FIS = addMF(FIS,'CE','gaussmf',[7 10],'Name','Positive');
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Define output u.

FIS = addOutput(FIS,[-20 20],'Name','u');
FIS = addMF(FIS,'u','constant',-20,'Name','Min');
FIS = addMF(FIS,'u','constant',0,'Name','Zero');
FIS = addMF(FIS,'u','constant',20,'Name','Max');

Define the following rules:

1 If E is negative and CE is negative, then u is -20.
2 If E is negative and CE is positive, then u is 0.
3 If E is positive and CE is negative, then u is 0.
4 If E is positive and CE is positive, then u is 20.

ruleList = [1 1 1 1 1;...   % Rule 1
            1 2 2 1 1;...   % Rule 2
            2 1 2 1 1;...   % Rule 3
            2 2 3 1 1];     % Rule 4
FIS = addRule(FIS,ruleList);

View the 3-D nonlinear control surface. This surface has a higher gain near the center of the E and CE
plane than the linear surface has, which helps reduce the error more quickly when the error is small.
When the error is large, the controller becomes less aggressive to avoid possible saturation.

gensurf(FIS)
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Before starting the simulation, update the lookup table with the new control surface data. Since the
surface is nonlinear, to obtain a sufficient approximation, add more sample points.

Step = 1;
E = -10:Step:10;
CE = -10:Step:10;
N = length(E);
LookUpTableData = zeros(N);
for i=1:N
   for j=1:N
      % Compute output u for each combination of sample points.
      LookUpTableData(i,j) = evalfis(FIS,[E(i) CE(j)]);
   end
end

Run the simulation.

sim('sllookuptable')

Compared with the traditional linear PID controller (the response curve with large overshoot), the
nonlinear fuzzy PID controller reduces the overshoot by 50%. The two response curves from the
nonlinear fuzzy controllers almost overlap, which indicates that the 2-D lookup table approximates
the fuzzy system well.

bdclose('sllookuptable') % Closing model also clears its workspace variables.

Conclusion

You can approximate a nonlinear fuzzy PID controller using a lookup table. By replacing a Fuzzy
Logic Controller block with Lookup Table blocks in Simulink, you can deploy a fuzzy controller with
simplified generated code and improved execution speed.
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• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-3
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• “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-10
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Deploy Fuzzy Inference Systems
You can deploy a fuzzy inference system (FIS) by generating code in either Simulink or MATLAB. You
can generate code for both type-1 (mamfis, sugfis) and type-2 fuzzy (mamfistype2,
sugfistype2) inference systems. All fuzzy inference system options, including custom inference
functions, support code generation.

Generate Code in Simulink
You can generate code for evaluating fuzzy inference systems in Simulink using the Fuzzy Logic
Controller block. You can generate code for double-precision, single-precision, or fixed-point data
using Simulink Coder™ or Simulink PLC Coder™.

For more information, see “Generate Code for Fuzzy System Using Simulink Coder” on page 6-3
and “Generate Structured Text for Fuzzy System Using Simulink PLC Coder” on page 6-7.

Generate Code in MATLAB
You can generate code for evaluating fuzzy inference systems in MATLAB. You can generate code for
double-precision or single-precision data using MATLAB Coder.

Code generation in MATLAB does not support fuzzy inference system objects. Instead, convert your
fuzzy system into a homogeneous structure using getFISCodeGenerationData, and pass the
resulting structure to evalfis.

For more information, see “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-10.

Note Code generation does not support the construction of fuzzy systems at the command line.

See Also
Functions
evalfis | mamfis | sugfis

Blocks
Fuzzy Logic Controller

More About
• “Build Fuzzy Systems at the Command Line” on page 2-31
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
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Generate Code for Fuzzy System Using Simulink Coder
You can generate code for a Fuzzy Logic Controller block using Simulink® Coder™. For more
information on generating code, see “Generate Code Using Simulink® Coder™” (Simulink Coder).

While this example generates code for a type-1 Sugeno fuzzy inference system, the workflow also
applies to Mamdani and type-2 fuzzy systems.

Generate Code for Fuzzy Inference System

By default, the Fuzzy Logic Controller block uses double-precision data for simulation and code
generation. The fuzzyPID model is configured to use double-precision data. For more information on
configuring your fuzzy inference system for code generation, see Fuzzy Logic Controller.

mdl = 'fuzzyPID';
open_system(mdl)

It is good practice to validate the performance of the system in Simulink. Run the simulation. The
model saves the output response, u, to the MATLAB® workspace.

sim(mdl)

To generate code for the model, use the rtwbuild function. For this example, suppress the
Command Window output for the build process.

set_param(mdl,'RTWVerbose','off')
rtwbuild(mdl)

### Starting build procedure for: fuzzyPID
### Successful completion of build procedure for: fuzzyPID

By default, Simulink Coder generates C code for a generic real-time target. To select a different
target file and language, in the Configuration Parameters dialog box, modify the System target file
and Language parameters, respectively.

The generated code is stored in a new fuzzyPID_grt_rtw folder in your current working folder. The
name of this folder depends on the selected target file.

On a Windows® system, by default, an executable file named fuzzyPID.exe is also added to the
current working folder. To generate code without compilation, in the Configuration parameters dialog
box, select the Generate code only parameter before generating code.

Run the executable.
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if ispc
    status = system(mdl);
else
    disp('The example only runs the executable on Windows system.');
end

 
** starting the model ** 
** created fuzzyPID.mat ** 
 

After the executable completes successfully (status = 0), the software creates a fuzzyPID.mat
data file that contains the simulation results.

You can compare the output response from the generated code, rtw_y, with the output from the
Simulink simulation, y, using the following code.

load fuzzyPID.mat
plot(tout,y,'b-',rt_tout,rt_y,'ro')
legend('Simulink','Executable','Location','Southeast')

The result from the generated code matches the Simulink simulation.

You can also generate code for just the controller subsystem in this model. To do so, specify the
subsystem when calling the rtwbuild function.

rtwbuild([mdl '/Fuzzy PID'])

### Starting build procedure for: Fuzzy0
### Successful completion of build procedure for: Fuzzy0
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You can deploy generated code according to your application needs. For example, you can configure
the properties of executable files and create static or dynamic libraries. For more information, see
“Build Process Workflow for Real-Time Systems” (Simulink Coder).

Generate Code for Other Data Types

The Fuzzy Logic Controller block also supports single-precision and fixed-point data for simulation
and code generation. In both cases, your resulting fuzzy system has decreased accuracy compared to
an equivalent double-precision fuzzy system. Use:

• Single-precision data to reduce the memory footprint of your system.
• Fixed-point data if your target platform only supports fixed-point arithmetic.

To use one of these data types, set the Data type property of the block, and configure the other
components in the model to use the same data type.

The fuzzyPID_single model is configured for single-precision data. Open the model.

mdl2 = 'fuzzyPID_single';
open_system(mdl2)

In this model, the Data type parameter of the Fuzzy Logic Controller block is set to single. The
Fuzzy Logic Controller block automatically converts input signals to the specified data type. Also, the
Simulate using parameter is set to Code Generation. The Simulate using option does not affect
the code generation process. Instead, setting this option simulates your fuzzy system using the same
code path used by generated code.

Generate code for this model.

set_param(mdl2,'RTWVerbose','off')
rtwbuild(mdl2)

### Starting build procedure for: fuzzyPID_single
### Successful completion of build procedure for: fuzzyPID_single

Setting the Data type parameter of a Fuzzy Logic Controller block ensures that all the inference
steps use the specified data type. However, depending on the configuration of other blocks in the
model, some of the generated code can still use double-precision data.

See Also
Fuzzy Logic Controller
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More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Structured Text for Fuzzy System Using Simulink PLC Coder” on page 6-7
• “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-10
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Generate Structured Text for Fuzzy System Using Simulink PLC
Coder

You can generate Structured Text for a Fuzzy Logic Controller block using Simulink® PLC Coder™.
For more information on generating Structured Text, see “Code Generation” (Simulink PLC Coder).

While this example generates Structured Text for a type-1 Sugeno fuzzy inference system, the
workflow also applies to Mamdani and type-2 fuzzy systems.

By default, the Fuzzy Logic Controller block uses double-precision data for simulation and code
generation. The fuzzyPID model is configured to use double-precision data. You can also use either
single-precision or fixed-point data. For more information on configuring your fuzzy inference system
for code generation, see Fuzzy Logic Controller.

mdl = 'fuzzyPID';
open_system(mdl)

It is good practice to validate the performance of the system in Simulink before generating code. Run
the simulation.

sim(mdl)
open_system([mdl '/Output'])
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Close output plot.

close_system([mdl '/Output'])

To generate Structured Text for the model, use the plcgeneratecode function, which generates
code for an atomic subsystem in a model. To generate code for the Fuzzy PID controller, configure the
subsystem as an atomic subsystem by selecting the Treat as atomic unit parameter for the
subsystem.

subsys = [mdl '/Fuzzy PID'];
set_param(subsys,'TreatAsAtomicUnit','on')

When generating code for just a Fuzzy Logic Controller block, place the block inside a subsystem,
and set the Treat as atomic unit parameter of that subsystem.

Generate Structured Text for the Fuzzy PID subsystem.

plcgeneratecode(subsys);

### Generating PLC code for 'fuzzyPID/Fuzzy PID'.
### Using <a href="matlab:configset.showParameterGroup('fuzzyPID', { 'PLC Code Generation' } )">model settings</a> from 'fuzzyPID' for PLC code generation parameters.
### Begin code generation for IDE <a href="matlab:configset.showParameterGroup('fuzzyPID', { 'PLC Code Generation' } )">codesys23</a>.
### Emit PLC code to file.
### Creating PLC code generation report <a href="matlab:web('C:\TEMP\Bdoc20a_1326390_8984\ib9D0363\17\tpf0515309\ex15678560\plcsrc\html\fuzzyPID\fuzzyPID_codegen_rpt.html')">fuzzyPID_codegen_rpt.html</a>.
### PLC code generation successful for 'fuzzyPID/Fuzzy PID'.
### Generated files:
<a href="matlab: edit('plcsrc\fuzzyPID.exp')">plcsrc\fuzzyPID.exp</a>

By default, the software saves the generated code in the following location.
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plcsrc/fuzzy_PID.exp

See Also
Fuzzy Logic Controller

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-3
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Generate Code for Fuzzy System Using MATLAB Coder
You can generate code for evaluating a fuzzy inference system using MATLAB® Coder™. For more
information on generating code, see “Code Generation” (MATLAB Coder).

To generate code for evaluating fuzzy systems, you must first create a fuzzy inference system (FIS).
For more information, see “Build Fuzzy Systems at the Command Line” on page 2-31 and “Build
Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14.

While this example generates code for a type-1 Mamdani fuzzy inference system, the workflow also
applies to Sugeno and type-2 fuzzy systems.

Generating code using MATLAB Coder does not support fuzzy FIS objects (mamfis, sugfis,
mamfistype2, sugfistype2). To generate code for evaluating fuzzy systems, you must convert your
fuzzy inference system objects into homogeneous structures using the
getFISCodeGenerationData function.

Embed FIS Data in Generated Code

You can embed the data for your fuzzy inference system within the generated code. Use this option if
you do not want to change the FIS data after compilation.

First, create a fuzzy system, or load a fuzzy system from a .fis file. For this example, load the fuzzy
system from tipper.fis.

fisObject = readfis("tipper.fis");

To use this FIS for code generation, convert it to a homogeneous structure.

fis = getFISCodeGenerationData(fisObject);

By default, getFISCodeGenerationData assumes that the FIS object is a type-1 system. To
generate code for a type-2 system, you must indicate the system type using
getFISCodeGenerationData(fisObject,"type2").

Create a function for evaluating the fuzzy system fis for a given input vector x. Within this function,
you can specify options for the evalfis function using evalfisOptions.

function y = evaluatefis1(fis,x)
    %#codegen
    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

Generate code for evaluatefis1, specifying that the fis input argument is constant. You can
specify different targets for your build, such as a static library, an executable, or a MEX file. For this
example, generate a MEX file.

codegen('evaluatefis1','-args',{coder.Constant(fis),[0 0]},'-config:mex')

To verify the execution of the MEX file:

1 Evaluate the MEX file for one or more input values. When you call the MEX file, specify the same
FIS structure that you used at compile time.

2 Evaluate the original FIS for the same input values using evalfis. When evaluating using
evalfis, use the same homogeneous FIS structure.
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3 Compare the evaluation results.

mexOutput1 = evaluatefis1_mex(fis,[7 9])

mexOutput1 = 21.0327

opt = evalfisOptions('NumSamplePoints',51);
evalfisOutput = evalfis(fis,[7 9],opt)

evalfisOutput = 21.0327

The MEX file output matches the evalfis output.

Alternatively, you can embed the FIS data in the generated code by reading the FIS data from a file at
code generation time. Specify a function for evaluating a fuzzy system for given input vector x. Within
this function, read the FIS data from the file tipper.fis.

function y = evaluatefis2(x)
    %#codegen
    fis = getFISCodeGenerationData('tipper.fis');
    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

Generate code for evaluatefis2.

codegen('evaluatefis2','-args',{[0 0]},'-config:mex')

Verify the execution of the MEX file using the same input values for x. In this case, you do not have to
specify the original FIS structure used at compile time.

mexOutput2 = evaluatefis2_mex([7 9])

mexOutput2 = 21.0327

evalfisOutput

evalfisOutput = 21.0327

Generate Code for Loading FIS Data at Run Time

You can generate code for evaluating a FIS that is read from a .fis file specified at run time. In this
case, the FIS data is not embedded in the generated code. Specify a function for evaluating the fuzzy
system defined in the specified file fileName for a given input vector x.

function y = evaluatefis3(fileName,x)
    %#codegen
    fis = getFISCodeGenerationData(fileName);
    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

Define input data types for this function.

fileName = coder.newtype('char',[1 Inf],[false true]);
x = coder.newtype('double',[1 Inf],[false true]);

Generate code for evaluatefis3.

codegen('evaluatefis3','-args',{fileName,x},'-config:mex')
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Verify the execution of the MEX file using the same input values for x. In this case, you specify the
name of the .fis file.

mexOutput3 = evaluatefis3_mex('tipper.fis',[7 9])

mexOutput3 = 21.0327

evalfisOutput

evalfisOutput = 21.0327

Each time you run evaluatefis3, it reloads the fuzzy system from the file. For computational
efficiency, you can create a function that only loads the FIS when a new file name is specified.

function y = evaluatefis4(fileName,x)
    %#codegen
    %#internal
    
    persistent fisName fis
    if isempty(fisName)
        [fisName,fis] = loadFIS(fileName);
    elseif ~strcmp(fisName,fileName)
        [fisName,fis] = loadFIS(fileName);
    end

    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

function [fisName,fis] = loadFIS(fileName)
    fisName = fileName;
    fis = getFISCodeGenerationData(fisName);
end

Generate code evaluatefis4. The input data types for this function are the same as for
evaluatefis3.

codegen('evaluatefis4','-args',{fileName,x},'-config:mex')

Verify the execution of the MEX file using the same input values file name.

mexOutput4 = evaluatefis4_mex('tipper.fis',[7 9])

mexOutput4 = 21.0327

evalfisOutput

evalfisOutput = 21.0327

Generate Code for Single-Precision Data

The preceding examples generated code for double-precision data. To generate code for single-
precision data, specify the data type of the input values as single. For example, generate code for
evaluatefis2 using single-precision data.

codegen('evaluatefis2','-args',{single([0 0])},'-config:mex')

Verify the MEX file execution, passing in single-precision input values.

mexOutputSingle = evaluatefis2_mex(single([7 9]))
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mexOutputSingle = single
    21.0327

evalfisOutput

evalfisOutput = 21.0327

See Also
evalfis | getFISCodeGenerationData

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-3
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Fuzzy Logic Designer
Design and test fuzzy inference systems

Description
The Fuzzy Logic Designer app lets you design and test fuzzy inference systems for modeling
complex system behaviors.

Using this app, you can:

• Design Mamdani and Sugeno fuzzy inference systems.
• Add or remove input and output variables.
• Specify input and output membership functions.
• Define fuzzy if-then rules.
• Select fuzzy inference functions for:

• And operations
• Or operations
• Implication
• Aggregation
• Defuzzification

• Adjust input values and view associated fuzzy inference diagrams.
• View output surface maps for fuzzy inference systems.
• Export fuzzy inference systems to the MATLAB workspace.

Limitations

The Fuzzy Logic Designer app does not support type-2 fuzzy systems.

Open the Fuzzy Logic Designer App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app

icon.
• MATLAB command prompt: Enter fuzzyLogicDesigner.

Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14

Programmatic Use
fuzzyLogicDesigner opens the Fuzzy Logic Designer app.
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fuzzyLogicDesigner(fis) opens the app and loads the fuzzy inference system fis. fis can be
any mamfis or sugfis object in the MATLAB workspace.

fuzzyLogicDesigner(fileName) opens the app and loads a fuzzy inference system from a file.
fileName is the name of a .fis file on the MATLAB path.

To save a fuzzy inference system to a .fis file:

• In Fuzzy Logic Designer, select File > Export > To File.
• At the command line, use writeFIS.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
Apps
Neuro-Fuzzy Designer

Functions
evalfis | mfedit | newfis | plotfis | ruleedit | ruleview | surfview

Topics
“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
“What Is Fuzzy Logic?” on page 1-3
“Foundations of Fuzzy Logic” on page 1-8
“Fuzzy Inference Process” on page 1-21

Introduced in R2014b
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Neuro-Fuzzy Designer
Design, train, and test Sugeno-type fuzzy inference systems

Description
The Neuro-Fuzzy Designer app lets you design, train, and test adaptive neuro-fuzzy inference
systems (ANFIS) using input/output training data.

Using this app, you can:

• Tune membership function parameters of Sugeno-type fuzzy inference systems.
• Automatically generate an initial inference system structure based on your training data.
• Modify the inference system structure before tuning.
• Prevent overfitting to the training data using additional checking data.
• Test the generalization ability of your tuned system using testing data.
• Export your tuned fuzzy inference system to the MATLAB workspace.

You can use the Neuro-Fuzzy Designer to train a type-1 Sugeno-type fuzzy inference system that:

• Has a single output.
• Uses weighted average defuzzification.
• Has output membership functions all of the same type, for example linear or constant.
• Has complete rule coverage with no rule sharing; that is, the number of rules must match the

number of output membership functions, and every rule must have a different consequent.
• Has unity weight for each rule.
• Does not use custom membership functions.

Open the Neuro-Fuzzy Designer App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app

icon.
• MATLAB command prompt: Enter neuroFuzzyDesigner.

Examples
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-120

Programmatic Use
neuroFuzzyDesigner opens the Neuro-Fuzzy Designer app.

neuroFuzzyDesigner(fis) opens the app and loads the fuzzy inference system fis. fis can be
any valid sugfis object in the MATLAB workspace.
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You can create an initial Sugeno-type fuzzy inference system from training data using the genfis
command.

neuroFuzzyDesigner(fileName) opens the app and loads a fuzzy inference system. fileName is
the name of a .fis file on the MATLAB path.

To save a fuzzy inference system to a .fis file:

• In the Fuzzy Logic Designer, select File > Export > To File
• At the command line, use writeFIS.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
Apps
Fuzzy Logic Designer

Functions
anfis | genfis

Topics
“Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-120
“Neuro-Adaptive Learning and ANFIS” on page 3-114

Introduced in R2014b
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addInput
Add input variable to fuzzy inference system

Syntax
fisOut = addInput(fisIn)
fisOut = addInput(fisIn,range)
fisOut = addInput( ___ ,Name,Value)

Description
fisOut = addInput(fisIn) adds a default input variable to fisIn and returns the resulting fuzzy
system in fisOut. This input variable has a default name, default range, and no membership
functions.

fisOut = addInput(fisIn,range) adds an input variable with the specified range.

fisOut = addInput( ___ ,Name,Value)configures the input variable using one or more name-
value pair arguments.

Examples

Add Input Variable to Fuzzy Inference System

Create a Sugeno fuzzy inference system.

fis = sugfis('Name','tipper');

Add an input variable with default specifications.

fis = addInput(fis);

You can configure the input variable properties using dot notation. For example, specify the name and
range for the variable.

fis.Inputs(1).Name = "service";
fis.Inputs(1).Range = [0 10];

View the input variable.

fis.Inputs(1)

ans = 
  fisvar with properties:

                   Name: "service"
                  Range: [0 10]
    MembershipFunctions: [0x0 fismf]

You can also specify a variable name and range when you add it to the fuzzy system.
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fis2 = sugfis('Name','tipper');
fis2 = addInput(fis2,[0 10],'Name',"service");

Add Input Variable with Membership Functions

Create a fuzzy inference system.

fis = mamfis('Name',"tipper");

Add an input variable with three Gaussian membership functions distributed over the input range.

fis = addInput(fis,'NumMFs',3,'MFType',"gaussmf");

View the membership functions.

plotmf(fis,'input',1)

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:
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• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less than the
second element. The first element specifies the lower bound of the range, and the second element
specifies the upper bound of the range.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumMFs',3 configures the variable to use three membership functions

Name — Variable name
string | character vector

Variable name, specified as the comma-separated pair consisting of 'Name' and a string or character
vector. The default variable name is "input<uniqueIndex>", where uniqueIndex is automatically
generated based on the current number of inputs in fisIn.

NumMFs — Number of membership functions
0 (default) | nonnegative integer

Number of membership functions, specified as the comma-separated pair consisting of 'NumMFs' and
a nonnegative integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type, specified as the comma-separated pair consisting of 'MFType' and one of
the following:

• "trimf" — Triangular membership functions
• "gaussmf" — Gaussian membership functions

The membership functions are uniformly distributed over the input variable range with approximately
80% overlap in the membership function supports.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
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• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added input variable, with all other properties matching the properties of
fisIn.

See Also
addOutput | fisvar | removeInput

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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addMF
Add membership function to fuzzy variable

Syntax
fisOut = addMF(fisIn,varName)
fisOut = addMF(fisIn,varName,type,parameters)
fisOut = addMF( ___ ,Name,Value)

varOut = addMF(varIn)
varOut = addMF(varIn,type,parameters)
varOut = addMF( ___ ,Name,Value)

Description
fisOut = addMF(fisIn,varName) adds a default membership function to the input or output
variable varName in the fuzzy inference system fisIn and returns the resulting fuzzy system in
fisOut.

fisOut = addMF(fisIn,varName,type,parameters) adds a membership function with the
specified type and parameters.

fisOut = addMF( ___ ,Name,Value) configures the membership function using one or more
name-value pair arguments.

varOut = addMF(varIn) adds a default membership function to fuzzy variable varIn and returns
the resulting fuzzy variable in varOut.

If varIn does not contain any membership functions, this syntax adds a default type-1 membership
function. Otherwise, the type of the added membership function matches the type of the existing
membership functions in varIn.

varOut = addMF(varIn,type,parameters) adds a membership function with the specified type
and parameters.

varOut = addMF( ___ ,Name,Value) specifies the name of the membership function using the
Name name-value pair argument.

To add a type-2 membership function to a fuzzy variable with no existing membership functions, you
must specify either the LowerLag or LowerScale name-value pair argument.

Examples

Add Membership Function to Fuzzy Inference System

Create a Mamdani fuzzy system, and add three input variables and one output variable. For this
example, give the second input variable and the output variable the same name.

fis = mamfis;
fis = addInput(fis,[0 80],"Name","speed");
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fis = addInput(fis,[0 100],"Name","throttle");
fis = addInput(fis,[0 10],"Name","distance");
fis = addOutput(fis,[0 100],"Name","throttle");

Add a membership function to the first input variable, specifying a trapezoidal membership function,
and set the membership function parameters.

fis = addMF(fis,"speed","trapmf",[-5 0 10 30]);

You can also specify the name of your membership when you add it to a fuzzy system. Add a
membership function called "high" to the first input variable.

fis = addMF(fis,"speed","trapmf",[50 70 80 85],'Name',"high");

View the membership functions for the first input variable.

plotmf(fis,"input",1)

If your system has an input variable with the same name as an output variable, you must specify the
variable type when adding a membership function. For example, add a membership function to the
output variable.

fis = addMF(fis,"throttle","trimf",[0 20 40],'VariableType',"output");
plotmf(fis,"output",1)
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Alternatively, you can add a default membership function to a fuzzy system and set its parameters
using dot notation. For example, add and configure a membership function for the third input
variable.

fis = addMF(fis,"distance");
fis.Inputs(3).MembershipFunctions(1).Type = "trapmf";
fis.Inputs(3).MembershipFunctions(1).Parameters = [-1 0 2 4];
plotmf(fis,"input",3)
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Add Membership Function to Type-2 Fuzzy Inference System

Create a type-2 Sugeno fuzzy system, and add two input variables and one output variable.

fis = sugfistype2;
fis = addInput(fis,[0 80],"Name","speed");
fis = addInput(fis,[0 10],"Name","distance");
fis = addOutput(fis,[0 100],"Name","braking");

Add a membership function to the first input variable, specifying a trapezoidal membership function,
and set the membership function parameters. This type-2 membership function uses default lower
membership function lag and scale parameters.

fis = addMF(fis,"speed","trapmf",[-5 0 10 30]);

You can also specify the configuration of the lower MF when adding a type-2 membership function.

fis = addMF(fis,"speed","trapmf",[10 30 50 70],'LowerScale',0.8,'LowerLag',0.1);

You can also specify the name of your membership function when you add it to a fuzzy system. Add a
membership function called "high" to the first input variable.

fis = addMF(fis,"speed","trapmf",[50 70 80 85],'Name',"high");

View the membership functions for the first input variable.
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plotmf(fis,"input",1)

Add Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range.

var = fisvar([0 1]);

Add a membership function to the variable, specifying a trapezoidal membership function, and set the
membership function parameters.

var = addMF(var,"trapmf",[-0.5 0 0.2 0.4]);

You can also specify the name of your membership when you add it to a fuzzy variable. For example,
add a membership function called "large".

var = addMF(var,"trapmf",[0.6 0.8 1 1.5],'Name',"large");

View the membership functions.

var.MembershipFunctions

ans = 
  1x2 fismf array with properties:
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    Type
    Parameters
    Name

  Details:
          Name        Type               Parameters         
         _______    ________    ____________________________

    1    "mf1"      "trapmf"    -0.5       0     0.2     0.4
    2    "large"    "trapmf"     0.6     0.8       1     1.5

Alternatively, you can add a default membership function to a fuzzy variable and set its parameters
using dot notation.

var = fisvar([0 1]);
var = addMF(var);
var.MembershipFunctions(1).Type = "trapmf";
var.MembershipFunctions(1).Parameters = [-0.5 0 0.2 0.4];

Add Type-2 Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range. By default, this variable has no membership functions.

var = fisvar([0 9]);

To add a type-2 membership function to a variable with no existing membership functions, specify
either a LowerLag or LowerScale value for the membership function. For example specify a lower
scale value.

var = addMF(var,"trimf",[0 3 6],'LowerScale',1);

Once a variable contains a type-2 membership function, you can add additional type-2 membership
functions without specifying one of these parameters.

var = addMF(var,"trimf",[3 6 9]);

View the membership functions.

var.MembershipFunctions

ans = 
  1x2 fismftype2 array with properties:

    Type
    UpperParameters
    LowerScale
    LowerLag
    Name

  Details:
         Name      Type      Upper Parameters    Lower Scale    Lower Lag 
         _____    _______    ________________    ___________    __________

    1    "mf1"    "trimf"      0    3    6            1         0.2    0.2
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    2    "mf2"    "trimf"      3    6    9            1         0.2    0.2

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

varName — Variable name
string | character vector

Variable name, specified as a string or character vector. You can specify the name of either an input
or output variable in your FIS. If your system has an input variable with the same name as an output
variable, specify the type of the variable you want to add a membership function to using the
VariableType name-value pair.

type — Membership function type
"trimf" (default) | string | character vector | function handle

Membership function type, specified as a string or character vector that contains the name of a
function in the current working folder or on the MATLAB path. You can also specify a handle to such a
function. When you specify type, you must also specify parameters.

This table describes the values that you can specify for type.

Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped membership
function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination membership

function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

"psigmf" Product of two sigmoidal membership
functions

psigmf

"zmf" Z-shaped membership function zmf
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Membership
Function Type

Description For More Information

"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
"constant" Constant membership function (not

supported for output variables of
Mamdani systems or for any input
variables)

“Sugeno Fuzzy Inference Systems” on
page 2-3

"linear" Linear membership function (not
supported for output variables of
Mamdani systems or for any input
variables)

String or character
vector

Name of a custom membership
function in the current working folder
or on the MATLAB path. Custom
functions are not supported for output
variables of Sugeno systems.

“Build Fuzzy Systems Using Custom
Functions” on page 2-40

Function handle Handle to a custom membership
function in the current working folder
or on the MATLAB path. Custom
functions are not supported for output
variables of Sugeno systems.

parameters — Membership function parameters
[0 0.5 1] (default) | vector

Membership function parameters, specified as a vector. The length of the parameter vector depends
on the membership function type. When you specify parameters, you must also specify type.

When fisIn is a type-1 FIS or varIn contains type-1 membership functions, parameters sets the
Parameters property of the added membership function.

When fisIn is a type-2 FIS or varIn contains type-2 membership functions, parameters sets the
UpperParameters property of the added membership function.

varIn — Fuzzy variable
fisvar object

Fuzzy variable, specified as a fisvar object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Name',"large" specifies the membership function name "large"

Name — Membership function name
string | character vector

Membership function name, specified as the comma-separated pair consisting of 'Name' and a string
or character vector. The default membership function name is "mf<uniqueIndex>", where
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uniqueIndex is automatically generated based on the current number of membership functions in
the associated variable.

VariableType — Variable type
"input" | "output"

Variable type, specified as the comma-separated pair 'VariableType' and one of the following:

• "input" — Input variable
• "output" — Output variable

If your system has an input variable with the same name as an output variable, specify which variable
to add the membership function to VariableType.

This name-value pair does not apply when adding when adding a membership function to a fisvar
object.

LowerScale — Lower membership function scaling factor
1 (default) | positive scalar less than or equal to 1

Lower membership function scaling factor for type-2 membership functions, specified as a positive
scalar less than or equal to 1. Use LowerScale to define the maximum value of the lower
membership function.

Depending on the value of LowerLag, the actual maximum lower membership function value can be
less than LowerScale.

This name-value pair applies only when adding type-2 membership functions.

LowerLag — Lower membership function delay factor
[0.2 0.2] (default) | scalar value between 0 and 1 | vector of length 2

Lower membership function delay factor for type-2 membership functions, specified as a scalar value
or a vector of length two. You can specify lag values between 0 and 1, inclusive.

This name-value pair applies only when adding type-2 membership functions.

The following membership function types support only a scalar LowerLag value:

• Symmetric MFs — gaussmf and gbellmf
• One-sided MFs — sigmf, smf, and zmf

All other built-in membership functions support either a scalar or vector LowerLag value. For these
membership functions, when you specify a:

• Scalar value, the same lag value is used for both the left and right side of the membership
function.

• Vector value, you can define different lag values for the left and right sides of the membership
function.

The lag value defines the point at which the lower membership function value starts increasing from
zero based on the value of the upper membership function. For example, a lag value of 0.1 indicates
that the lower membership function becomes positive when the upper membership function has a
membership value of 0.1.
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When the lag value is zero, the lower membership function starts increasing at the same point as the
upper membership function.

Some membership function types restrict the maximum lag value. For example, LowerLag must be
less than 1 for the gaussmf, gauss2mf, gbellmf, sigmf, dsigmf, and psigmf membership
functions.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added membership function, with all other properties matching the properties
of fisInfisOut contains the added membership function, with all other properties matching the
properties of fisIn

varOut — Fuzzy variable
fisvar object

Fuzzy variable, returned as a fisvar object. varOut contains the added membership function, with
all other properties matching the properties of varIn.

Compatibility Considerations
addmf is now addMF and its function syntax has changed
Behavior changed in R2018b

The name and behavior of the addmf function has changed. Now:

• addmf is addMF
• You specify the variable to which you want to add the membership function by name rather than

by index.
• You specify the name of the membership function using a name-value pair argument.

These changes require updates to your code.

Update Code

The following table shows some typical usages of addmf for adding membership functions to fuzzy
variables and how to update your code. In this table, fis is a fuzzy inference system with two inputs,
service and food, and one output, tip.
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If your code has this form: Use this code instead:
fis = addmf(fis'input',1,...
            'poor',...
            'gaussmf',[1.5 0])

fis = addMF(fis,"service",...
            "gaussmf",[1.5 0],
            'Name',"poor")

fis = addmf(fis,'input',2,...
            'rancid',...
            'trapmf',[-2 0 1 3])

fis = addMF(fis,"food",...
            "trapmf",[-2 0 1 3],...
            'Name',"rancid")

fis = addmf(fis,'output',1,...
            'cheap',...
            'trimf',[0 5 10])

fis = addMF(fis,"tip",...
            "trimf",[0 5 10],...
            'Name',"cheap")

Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
addInput | addOutput | addRule | fisvar | mamfis | removeMF | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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addOutput
Add output variable to fuzzy inference system

Syntax
fisOut = addOutput(fisIn)
fisOut = addOutput(fisIn,range)
fisOut = addOutput( ___ ,Name,Value)

Description
fisOut = addOutput(fisIn) adds a default output variable to fisIn, and returns the resulting
fuzzy system in fisOut. This output variable has a default name, default range, and no membership
functions.

fisOut = addOutput(fisIn,range) adds an output variable with the specified range.

fisOut = addOutput( ___ ,Name,Value)configures the output variable using one or more name-
value pair arguments.

Examples

Add Output Variable to Fuzzy Inference System

Create a Mamdani fuzzy inference system.

fis = mamfis('Name','tipper');

Add an output variable with default specifications.

fis = addOutput(fis);

You can configure the output variable properties using dot notation. For example, specify the name
and range for the variable.

fis.Outputs(1).Name = "tip";
fis.Outputs(1).Range = [10 30];

View the output variable.

fis.Outputs(1)

ans = 
  fisvar with properties:

                   Name: "tip"
                  Range: [10 30]
    MembershipFunctions: [0x0 fismf]

You can also specify the variable name and range when you add it to the fuzzy system.
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fis2 = mamfis('Name','tipper');
fis2 = addOutput(fis2,[10 30],'Name',"tip");

Add Output Variable with Membership Functions

Create a Sugeno fuzzy inference system.

fis = sugfis('Name',"tipper");

Add an output variable with three constant membership functions distributed over the output range.

fis = addOutput(fis,'NumMFs',3,'MFType',"constant");

View the membership functions.

fis.Outputs(1).MembershipFunctions

ans = 
  1x3 fismf array with properties:

    Type
    Parameters
    Name

  Details:
         Name        Type       Parameters
         _____    __________    __________

    1    "mf1"    "constant"         0    
    2    "mf2"    "constant"       0.5    
    3    "mf3"    "constant"         1    

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less than the
second element. The first element specifies the lower bound of the range, and the second element
specifies the upper bound of the range.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumMFs',3 configures the variable to use three membership functions

Name — Variable name
string | character vector

Variable name, specified as the comma-separated pair consisting of 'Name' and a string or character
vector.

NumMFs — Number of membership functions
0 (default) | nonnegative integer

Number of membership functions, specified as the comma-separated pair consisting of 'NumMFs' and
a nonnegative integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type, specified as the comma-separated pair consisting of 'MFType' and one of
the following:

• "trimf" — Triangular membership functions for the outputs of Mamdani system
• "gaussmf" — Gaussian membership functions for the outputs of Mamdani systems
• "constant" — Constant membership functions for the outputs of Sugeno systems
• "linear" — Linear membership functions for the outputs of Sugeno systems. To add an output

variable with linear membership functions, your FIS must have at least one input variable.

The membership functions are uniformly distributed over the variable range with approximately 80%
overlap in the membership function supports.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added output variable, with all other properties matching the properties of
fisIn.

See Also
addInput | fisvar | removeOutput
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Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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addRule
Add rule to fuzzy inference system

Syntax
fisOut = addRule(fisIn)
fisOut = addRule(fisIn,ruleDescription)

Description
fisOut = addRule(fisIn) adds a single fuzzy rule to fuzzy inference system fisIn with the
default description "input1==mf1 => output1=mf1" and returns the resulting fuzzy system in
fisOut.

fisOut = addRule(fisIn,ruleDescription) adds one or more fuzzy rules using the rule
descriptions in ruleDescription.

Examples

Add Single Rule to Fuzzy Inference System

Load a fuzzy inference system (FIS), and clear the existing rules.

fis = readfis('tipper');
fis.Rules = [];

Add a rule to the FIS.

ruleTxt = 'If service is poor then tip is cheap';
fis2 = addRule(fis,ruleTxt);

fis2 is equivalent to fis, except that the specified rule is added to the rule base.

fis2.Rules

ans = 
  fisrule with properties:

    Description: "service==poor => tip=cheap (1)"
     Antecedent: [1 0]
     Consequent: 1
         Weight: 1
     Connection: 1

Add Rules Using Symbolic Expressions

Load a fuzzy inference system (FIS), and clear the existing rules.
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fis = readfis('tipper');
fis.Rules = [];

Specify the following rules using symbolic expressions:

• If service is poor or food is rancid then tip is cheap.
• If service is excellent and food is not rancid then tip is generous.

rule1 = "service==poor | food==rancid => tip=cheap";
rule2 = "service==excellent & food~=rancid => tip=generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = addRule(fis,rules);

fis2 is equivalent to fis, except that the specified rules are added to the rule base.

fis2.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                               Description                      
         _______________________________________________________

    1    "service==poor | food==rancid => tip=cheap (1)"        
    2    "service==excellent & food~=rancid => tip=generous (1)"

Add Rules Using Membership Function Indices

Load fuzzy inference system (FIS) and clear the existing rules.

fis = readfis('mam22.fis');
fis.Rules = [];

Specify the following rules using membership function indices:

• If angle is small and velocity is big, then force is negBig and force2 is posBig2.
• If angle is not small and velocity is small, then force is posSmall and force2 is

negSmall2.

rule1 = [1 2 1 4 1 1];
rule2 = [-1 1 3 2 1 1];
rules = [rule1; rule2];

Add the rules to the FIS.
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fis2 = addRule(fis,rules);

fis2 is equivalent to fis, except that the specified rules are added to the rule base.

fis2.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                                       Description                               
         ________________________________________________________________________

    1    "angle==small & velocity==big => force=negBig, force2=posBig2 (1)"      
    2    "angle~=small & velocity==small => force=posSmall, force2=negSmall2 (1)"

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

ruleDescription — Rule description
string | character vector | numeric row vector | string array | character array | numeric array

Rule description, specified using either a text or numeric rule definition

Text Rule Description

For a text rule description, specify ruleDescription as one of the following:

• String or character vector specifying a single rule

rule = "If service is poor or food is rancid then tip is cheap";
• String array, where each element corresponds to a rule. For example:

ruleList = ["If service is poor or food is rancid then tip is cheap";
            "If service is good then tip is average";
            "If service is excellent or food is delicious then tip is generous"];

• Character array where each row corresponds to a rule. For example:
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';

 addRule

8-23



rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

For each rule, use one of the following rule text formats:

• Verbose — Linguistic expression in the following format, using the IF and THEN keywords:

"IF <antecedent> THEN <consequent> (<weight>)"

In <antecedent>, specify the membership function for each input variable using the IS or IS
NOT keyword. Connect these conditions using the AND or OR keywords. If a rule does not use a
given input variable, omit it from the antecedent.

In <consequent>, specify the condition for each output variable using the IS or IS NOT
keyword, and separate these conditions using commas. The IS NOT keyword is not supported for
Sugeno outputs. If a rule does not use a given output variable, omit it from the consequent.

Specify the weight using a positive numerical value.

For example:

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"
• Symbolic — Expression that uses the symbols in the following table instead of keywords. There is

no symbol for the IF keyword.

Symbol Keyword
== IS (in rule antecedent)
~= IS NOT
& AND
| OR
=> THEN
= IS (in rule consequent)

For example, the following symbolic rule is equivalent to the previous verbose rule.

"A==a & B~=b => X=x, Y~=y (1)"

Numeric Rule Description

For a numeric rule description, specify ruleDescription as one of the following:

• Row vector to specify a single fuzzy rule
• Array, where each row of ruleValues specifies one rule

For each row, the numeric rule description has M+N+2 columns, where M is the number of input
variables and N is the number of output variables. Each column contains the following information:

• The first M columns specify input membership function indices and correspond to the
Antecedent property of the rule. To indicate a NOT condition, specify a negative value. If a rule
does not use a given input, set the corresponding index to 0. For each rule, at least one input
membership function index must be nonzero.

• The next N columns specify output membership function indices and correspond to the
Consequent property of the rule. To indicate a NOT condition for Mamdani systems, specify a
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negative value. NOT conditions are not supported for Sugeno outputs. If a rule does not use a
given output, set the corresponding index to 0. For each rule, at least one output membership
function index must be nonzero.

• Column M+N+1 specifies the rule weight and corresponds to the Weight property of the rule.
• The final column specifies the antecedent fuzzy operator and corresponds to the Connection

property of the rule.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added output rules, with all other properties matching the properties of fisIn.

Compatibility Considerations
addrule is now addRule
Behavior changed in R2018b

addrule is now addRule. To update your code, change the function name from addrule to
addRule. The syntaxes are equivalent.

Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
addInput | addMF | addOutput

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31
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addvar
(To be removed) Add variable to fuzzy inference system

Note addvar will be removed in a future release. Use addInput or addOutput instead. For more
information, see “Compatibility Considerations”.

Syntax
fis = addvar(fis,varType,varName,varBounds)

Description
addvar has four input arguments:

• fis — Fuzzy inference system in the MATLAB workspace, specified as a FIS structure.
• varType — Type of variable to add, specified as 'input' or 'output'.
• varName — Name of the variable to add, specified as a character vector or string.
• varBounds — Variable range, specified as a two-element vector, where the first element is the

minimum value and the second element is the maximum value for the variable.

Indices are applied to variables in the order in which they are added. Therefore, the first input
variable added to a system is always known as input variable number one for that system. Input and
output variables are numbered independently.

Examples

Add Variable to Fuzzy Inference System

Create new FIS.

fis = newfis('tipper');

Add new input variable.

fis = addvar(fis,'input','service',[0 10]);

View new variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'service'
    NumMFs: 0
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     range: [0 10]

Compatibility Considerations
addvar will be removed
Not recommended starting in R2018b

addvar will be removed in a future release. Use addInput or addOutput instead. There are
differences between these functions that require updates to your code.

To add input or output variables to a fuzzy system, use addInput or addOutput, respectively.

Update Code

This table shows some typical usages of addvar and how to update your code to use addInput or
addOutput instead.

If your code has this form: Use this code instead:
fis = addvar(fis,'input',...
             'service',[0 10])

fis = addInput(fis,[0 10],...
               'Name',"service")

fis = addvar(fis,'output',...
             'tip',[0 30])

fis = addOutput(fis,[0 30],...
                'Name',"tip")

See Also
addInput | addMF | addOutput | addRule | rmmf | rmvar

Introduced before R2006a

8 Functions

8-28



anfis
Tune Sugeno-type fuzzy inference system using training data

Syntax
fis = anfis(trainingData)
fis = anfis(trainingData,options)

[fis,trainError] = anfis( ___ )
[fis,trainError,stepSize] = anfis( ___ )

[fis,trainError,stepSize,chkFIS,chkError] = anfis(trainingData,options)

Description
fis = anfis(trainingData) generates a single-output Sugeno fuzzy inference system (FIS) and
tunes the system parameters using the specified input/output training data. The FIS object is
automatically generated using grid partitioning.

The training algorithm uses a combination of the least-squares and backpropagation gradient descent
methods to model the training data set.

fis = anfis(trainingData,options) tunes an FIS using the specified training data and
options. Using this syntax, you can specify:

• An initial FIS object to tune.
• Validation data for preventing overfitting to training data.
• Training algorithm options.
• Whether to display training progress information.

[fis,trainError] = anfis( ___ ) returns the root mean square training error for each training
epoch.

[fis,trainError,stepSize] = anfis( ___ ) returns the training step size at each training
epoch.

[fis,trainError,stepSize,chkFIS,chkError] = anfis(trainingData,options) returns
the validation data error for each training epoch, chkError, and the tuned FIS object for which the
validation error is minimum, chkFIS. To use this syntax, you must specify validation data using
options.ValidationData.

Examples

Train Fuzzy Inference System Using ANFIS

Load training data. This data has a single input and a single output.

load fuzex1trnData.dat
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Generate and train a fuzzy inference system. By default, the FIS structure is created using a grid
partition of the input variable range with two membership functions.

fis = anfis(fuzex1trnData);

ANFIS info: 
    Number of nodes: 12
    Number of linear parameters: 4
    Number of nonlinear parameters: 6
    Total number of parameters: 10
    Number of training data pairs: 25
    Number of checking data pairs: 0
    Number of fuzzy rules: 2

Start training ANFIS ...

   1      0.229709
   2      0.22896
   3      0.228265
   4      0.227624
   5      0.227036
Step size increases to 0.011000 after epoch 5.
   6      0.2265
   7      0.225968
   8      0.225488
   9      0.225052
Step size increases to 0.012100 after epoch 9.
  10      0.22465

Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.224650

Plot the ANFIS output and training data.

x = fuzex1trnData(:,1);
anfisOutput = evalfis(fis,x);
plot(x,fuzex1trnData(:,2),'*r',x,anfisOutput,'.b')
legend('Training Data','ANFIS Output','Location','NorthWest')
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The ANFIS data does not match the training data well. To improve the match:

• Increase the number of membership functions in the FIS structure to 4. Doing so adds fuzzy rules
and tunable parameters to the system.

• Increase the number of training epochs.

opt = anfisOptions('InitialFIS',4,'EpochNumber',40);

Suppress the error and step size Command Window display.

opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;

Train the FIS.

fis = anfis(fuzex1trnData,opt);

ANFIS info: 
    Number of nodes: 20
    Number of linear parameters: 8
    Number of nonlinear parameters: 12
    Total number of parameters: 20
    Number of training data pairs: 25
    Number of checking data pairs: 0
    Number of fuzzy rules: 4

Minimal training RMSE = 0.083385
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Plot the ANFIS output and training data.

figure
anfisOutput = evalfis(fis,x);
plot(x,fuzex1trnData(:,2),'*r',x,anfisOutput,'.b')
legend('Training Data','ANFIS Output','Location','NorthWest')

The match between the training data and ANFIS output has improved.

Create Initial FIS for ANFIS Training

Create single-input, single-output training data.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);

Define an initial FIS structure with five Gaussian input membership functions.

genOpt = genfisOptions('GridPartition');
genOpt.NumMembershipFunctions = 5;
genOpt.InputMembershipFunctionType = 'gaussmf';
inFIS = genfis(x,y,genOpt);

Configure the ANFIS training options. Set the initial FIS, and suppress the training progress display.
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opt = anfisOptions('InitialFIS',inFIS);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train the FIS using the specified options.

outFIS = anfis([x y],opt);

Compare the ANFIS output with the training data.

plot(x,y,x,evalfis(outFIS,x))
legend('Training Data','ANFIS Output')

Obtain ANFIS Training Error

Load training data. This data has a single input and a single output.

load fuzex2trnData.dat

Specify the training options.

opt = anfisOptions('InitialFIS',4,'EpochNumber',40);
opt.DisplayANFISInformation = 0;
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opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train the FIS, and return the training error.

[fis,trainError] = anfis(fuzex2trnData,opt);

trainError contains the root mean squared error for the training data at each training epoch. The
training error for fis is the minimum value in trainError.

fisRMSE = min(trainError)

fisRMSE = 0.2572

Obtain ANFIS Step Size Profile

Create single-input, single-output training data.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);

Configure the ANFIS training options. Set the initial FIS, and suppress the training progress display.

opt = anfisOptions('InitialFIS',4,'EpochNumber',60);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

A larger step size increase rate can make the training converge faster. However, increasing the step
size increase rate too much can lead to poor convergence. For this example, try doubling the step size
increase rate.

opt.StepSizeIncreaseRate = 2*opt.StepSizeIncreaseRate;

Train the FIS, and return the step size array.

[fis,~,stepSize] = anfis([x y],opt);

Plot the step size profile. An optimal step size profile should increase initially, reach a maximum, and
then decrease for the rest of the training.

figure
plot(stepSize)
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Validate ANFIS Training

Load training data.

load fuzex1trnData.dat

Load validation data.

load fuzex1chkData.dat

Specify the following training options:

• 4 input membership functions
• 30 training epochs
• Suppress training progress display

opt = anfisOptions('InitialFIS',4,'EpochNumber',30);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Add the validation data to the training options.

opt.ValidationData = fuzex1chkData;
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Train the FIS, and return the validation results.

[fis,trainError,stepSize,chkFIS,chkError] = anfis(fuzex1trnData,opt);

The training error, trainError, and validation error, chkError, arrays each contain one error value
per training epoch. Plot the training error and the validation error.

x = [1:30];
plot(x,trainError,'.b',x,chkError,'*r')

The minimum validation error occurs at epoch 17. The increase in validation error after this point
indicates overfitting of the model parameters to the training data. Therefore, the tuned FIS at epoch
17, chkFIS, exhibits the best generalization performance.

Input Arguments
trainingData — Training data
array

Training data, specified as an array. For a fuzzy system with N inputs, specify trainingData as an
array with N+1 columns. The first N columns contain input data, and the final column contains
output data. Each row of trainingData contains one data point.

Generally, training data should fully represent the features of the data the FIS is intended to model.
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options — Training options
anfisOptions option set

Training options, specified as an anfisOptions option set. Using options, you can specify:

• An initial FIS structure to tune, options.InitialFIS.
• Validation data for preventing overfitting to training data, options.ValidationData.
• Training algorithm options, such as the maximum number of training epochs,

options.EpochNumber, or the training error goal, options.ErrorGoal.
• Whether to display training progress information, such as the training error values for each

training epoch, options.DisplayErrorValues.

Output Arguments
fis — Trained fuzzy inference system
mamfis object | sugfis object

Trained fuzzy inference system with membership function parameters tuned using the training data,
returned as a mamfis or sugfis object. This fuzzy system corresponds to the epoch for which the
training error is smallest. If two epochs have the same minimum training error, the FIS from the
earlier epoch is returned.

trainError — Root mean square training error
array

Root mean square training error for each training epoch, returned as an array. The minimum value in
trainError is the training error for fuzzy system fis.

stepSize — Training step size
array

Training step size for each epoch, returned as an array. The anfis training algorithm tunes the FIS
parameters using gradient descent optimization methods. The training step size is the magnitude of
the gradient transitions in the parameter space.

Ideally, the step size increases at the start of training, reaches a maximum, and then decreases for
the remainder of the training. To achieve this step size profile, adjust the initial step size
(options.InitialStepSize), step size increase rate (options.StepSizeIncreaseRate), and
step size decrease rate options.StepSizeDecreaseRate.

chkFIS — Tuned FIS for which the validation error is minimum
mamfis object | sugfis object

Tuned FIS for which the validation error is minimum, returned as a mamfis or sugfis object. If two
epochs have the same minimum validation error, the FIS from the earlier epoch is returned.

chkFIS is returned only when you specify validation data using options.ValidationData.

chkError — Root mean square validation error
array

Root mean square training error, returned as an array with length equal to the number of training
epochs. The minimum value in chkError is the training error for fuzzy system chkFIS.
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chkError is returned only when you specify validation data using options.ValidationData.

Alternative Functionality
tunefis Function

Starting in R2019a, you can tune a fuzzy system using tunefis. This function provides several other
options for tuning algorithms, specified by the tunefisOptions object.

To use ANFIS, specify the tuning algorithm as "anfis" in tunefisOptions. Then, use the options
object as an input argument for tunefis. For example:

Create the initial fuzzy inference system, and define the tunable parameter settings.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);
[in,out,rule] = getTunableSettings(fisin);

Tune the membership function parameters with "anfis".

opt = tunefisOptions("Method","anfis");
fisout = tunefis(fisin,[in;out],x,y,opt);

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

References
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[2] Jang, J.-S. R., "ANFIS: Adaptive-Network-based Fuzzy Inference Systems," IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 23, No. 3, May 1993, pp. 665-685.
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See Also
Apps
Neuro-Fuzzy Designer

Functions
anfisOptions | genfis | tunefis

Topics
“Neuro-Adaptive Learning and ANFIS” on page 3-114
“Predict Chaotic Time-Series using ANFIS” on page 3-136
“Modeling Inverse Kinematics in a Robotic Arm” on page 3-144

Introduced before R2006a
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anfisOptions
Option set for anfis command

Syntax
opt = anfisOptions
opt = anfisOptions(Name,Value)

Description
opt = anfisOptions creates a default option set for tuning a Sugeno fuzzy inference system using
anfis. Use dot notation to modify this option set for your specific application. Any options that you
do not modify retain their default values.

opt = anfisOptions(Name,Value) creates an option set with options specified by one or more
Name,Value pair arguments.

Examples

Create Option Set for ANFIS Training

Create a default option set.

opt = anfisOptions;

Specify training options using dot notation. For example, specify the following options:

• Initial FIS with 4 membership functions for each input variable
• Maximum number of training epochs equal to 30.

opt.InitialFIS = 4;
opt.EpochNumber = 30;

You can also specify options when creating the option set using one or more Name,Value pair
arguments.

opt2 = anfisOptions('InitialFIS',4,'EpochNumber',30);

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'EpochNumber',50 sets the maximum number of training epochs to 50.
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InitialFIS — Initial FIS structure
2 (default) | positive integer greater than 1 | vector of positive integers | FIS structure

Initial FIS structure to tune, specified as the comma-separated pair consisting of 'InitialFIS' and
one of the following:

• Positive integer greater than 1 specifying the number of membership functions for all input
variables. anfis generates an initial FIS structure with the specified number of membership
functions using genfis with grid partitioning.

• Vector of positive integers with length equal to the number of input variables specifying the
number of membership functions for each input variable. anfis generates an initial FIS structure
with the specified numbers of membership functions using genfis with grid partitioning.

• FIS structure generated using genfis command with grid partitioning or subtractive clustering.
The specified system must have the following properties:

• Single output, obtained using weighted average defuzzification.
• First or zeroth order Sugeno-type system; that is, all output membership functions must be the

same type and be either 'linear' or 'constant'.
• No rule sharing. Different rules cannot use the same output membership function; that is, the

number of output membership functions must equal the number of rules.
• Unity weight for each rule.
• No custom membership functions or defuzzification methods.

EpochNumber — Maximum number of training epochs
10 (default) | positive integer

Maximum number of training epochs, specified as the comma-separated pair consisting of
'EpochNumber' and a positive integer. The training process stops when it reaches the maximum
number of training epochs.

ErrorGoal — Training error goal
0 (default) | scalar

Training error goal, specified as the comma-separated pair consisting of 'ErrorGoal' and a scalar.
The training process stops when the training error is less than or equal to ErrorGoal.

InitialStepSize — Initial training step size
0.01 (default) | positive scalar

Initial training step size, specified as the comma-separated pair consisting of 'InitialStepSize'
and a positive scalar.

The anfis training algorithm tunes the FIS parameters using gradient descent optimization
methods. The training step size is the magnitude of each gradient transition in the parameter space.
Typically, you can increase the rate of convergence of the training algorithm by increasing the step
size. During optimization, anfis automatically updates the step size using StepSizeIncreaseRate
and StepSizeDecreaseRate.

Generally, the step-size profile during training is a curve that increases initially, reaches some
maximum, and then decreases for the remainder of the training. To achieve this ideal step-size
profile, adjust the initial step-size and the increase and decrease rates
(opt.StepSizeDecreaseRate, opt.StepSizeIncreaseRate).
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StepSizeDecreaseRate — Step-size decrease rate
0.9 (default) | positive scalar less than 1

Step-size decrease rate, specified as the comma-separated pair consisting of
'StepSizeDecreaseRate' and a positive scalar less than 1. If the training error undergoes two
consecutive combinations of an increase followed by a decrease, then anfis scales the step size by
the decrease rate.

StepSizeIncreaseRate — Step-size increase rate
1.1 (default) | scalar greater than 1

Step-size increase rate, specified as the comma-separated pair consisting of
'StepSizeIncreaseRate' and a scalar greater than 1. If the training error decreases for four
consecutive epochs, then anfis scales the step size by the increase rate.

DisplayANFISInformation — Flag for showing ANFIS information
1 (default) | 0

Flag for showing ANFIS information at the start of the training process, specified as the comma-
separated pair consisting of 'DisplayANFISInformation' and one of the following:

• 1 — Display the following information about the ANFIS system and training data:

• Number of nodes in the ANFIS system
• Number of linear parameters to tune
• Number of nonlinear parameters to tune
• Total number of parameters to tune
• Number of training data pairs
• Number of checking data pairs
• Number of fuzzy rules

• 0 — Do not display the information.

DisplayErrorValues — Flag for showing training error values
1 (default) | 0

Flag for showing training error values after each training epoch, specified as the comma-separated
pair consisting of 'DisplayErrorValues' and one of the following:

• 1 — Display the training error.
• 0 — Do not display the training error.

DisplayStepSize — Flag for showing step size
1 (default) | 0

Flag for showing step size whenever the step size changes, specified as the comma-separated pair
consisting of 'DisplayStepSize' and one of the following:

• 1 — Display the step size.
• 0 — Do not display the step size.

DisplayFinalResults — Flag for displaying final results
1 (default) | 0
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Flag for displaying final results after training, specified as the comma-separated pair consisting of
'DisplayFinalResults' and one of the following:

• 1 — Display the results.
• 0 — Do not display the results.

ValidationData — Validation data
[] (default) | array

Validation data for preventing overfitting to the training data, specified as the comma-separated pair
consisting of 'ValidationData' and an array. For a fuzzy system with N inputs, specify
ValidationData as an array with N+1 columns. The first N columns contain input data and the
final column contains output data. Each row of ValidationData contains one data point.

At each training epoch, the training algorithm validates the FIS using the validation data.

Generally, validation data should fully represent the features of the data the FIS is intended to model,
while also being sufficiently different from the training data to test training generalization.

OptimizationMethod — Optimization method
1 (default) | 0

Optimization method used in membership function parameter training, specified as the comma-
separated pair consisting of 'OptimizationMethod' and one of the following:

• 1 — Use a hybrid method, which uses a combination of backpropagation to compute input
membership function parameters, and least squares estimation to compute output membership
function parameters.

• 0 — Use backpropagation gradient descent to compute all parameters.

Output Arguments
opt — Training options for anfis command
anfisOptions option set

Training options for anfis command, returned as an anfisOptions option set.

See Also
anfis | genfis

Introduced in R2017a
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convertfis
Convert previous versions of fuzzy inference data in current format

Syntax
fisNew = convertfis(fisOld)

Description
In R2018b, the format of fuzzy inference systems changed from a structure format to an object
format. To convert fuzzy systems in an old format to the new format, use convertfis.

fisNew = convertfis(fisOld) converts the old-format fuzzy inference system fisOld into the
current object format.

Examples

Convert Old-Format Fuzzy Inference System

Load a fuzzy inference system created using an old format. For example, load a FIS structure from a
MAT-file.

load fisStructure

View the fields of the structure.

fisStructure

fisStructure = struct with fields:
            name: 'tipper'
            type: 'mamdani'
       andMethod: 'min'
        orMethod: 'max'
    defuzzMethod: 'centroid'
       impMethod: 'min'
       aggMethod: 'max'
           input: [1x2 struct]
          output: [1x1 struct]
            rule: [1x3 struct]

Convert the structure to a mamfis object and view the object properties.

fisObject = convertfis(fisStructure)

fisObject = 
  mamfis with properties:

                       Name: "tipper"
                  AndMethod: "min"
                   OrMethod: "max"
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          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Input Arguments
fisOld — Old-format fuzzy inference system
structure | matrix

Old-format fuzzy inference system, specified as a structure or a matrix.

Output Arguments
fisNew — New-format fuzzy inference system
mamfis object | sugfis object

New-format fuzzy inference system, returned as a mamfis object or a sugfis object.

See Also
mamfis | sugfis

Introduced in R2018b
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convertToStruct
Convert fuzzy inference system object into a structure

Syntax
fisStructure = convertToStruct(fisObject)

Description
fisStructure = convertToStruct(fisObject) converts a fuzzy inference system object into a
structure.

Examples

Convert FIS Object into Structure

Load a fuzzy inference system.

fisObject = readfis('tipper')

fisObject = 
  mamfis with properties:

                       Name: "tipper"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Convert the fuzzy inference system object into a structure.

fisStructure = convertToStruct(fisObject)

fisStructure = struct with fields:
            name: 'tipper'
            type: 'mamdani'
       andMethod: 'min'
        orMethod: 'max'
    defuzzMethod: 'centroid'
       impMethod: 'min'
       aggMethod: 'max'
           input: [1x2 struct]
          output: [1x1 struct]
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            rule: [1x3 struct]

Input Arguments
fisObject — Fuzzy inference system object
mamfis object | sugfis object

Fuzzy inference system object, specified as a mamfis or sugfis object.

Output Arguments
fisStructure — Fuzzy inference system structure
structure

Fuzzy inference system structure, returned as a structure. The fields of the structure correspond to
the properties of the FIS object. For object properties that are themselves objects, the corresponding
structure field is a structure.

See Also
mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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convertToSugeno
Convert Mamdani fuzzy inference system into Sugeno fuzzy inference system

Syntax
sugenoFIS = convertToSugeno(mamdaniFIS)

Description
sugenoFIS = convertToSugeno(mamdaniFIS) converts the Mamdani fuzzy inference system
mamdaniFIS into a Sugeno fuzzy inference system sugenoFIS.

Examples

Transform Mamdani FIS into Sugeno FIS

Load a Mamdani fuzzy inference system.

mam_fismat = readfis('mam22.fis');

Convert this system to a Sugeno fuzzy inference system.

sug_fismat = convertToSugeno(mam_fismat);

Plot the output surfaces for both fuzzy systems.

subplot(2,2,1)
gensurf(mam_fismat)
title('Mamdani system (Output 1)')
subplot(2,2,2)
gensurf(sug_fismat)
title('Sugeno system (Output 1)')
subplot(2,2,3)
gensurf(mam_fismat,gensurfOptions('OutputIndex',2))
title('Mamdani system (Output 2)')
subplot(2,2,4)
gensurf(sug_fismat,gensurfOptions('OutputIndex',2))
title('Sugeno system (Output 2)')
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The output surfaces for both systems are similar.

Input Arguments
mamdaniFIS — Mamdani fuzzy inference system
mamfis object | mamfistype2 object

Mamdani fuzzy inference system, specified as a mamfis or mamfistype2 object.

Output Arguments
sugenoFIS — Sugeno fuzzy inference system
sugfis object | sugfistype2 object

Sugeno fuzzy inference system, returned as one of the following:

• sugfis object when mamdaniFIS is a mamfis object
• sugfistype2 object when mamdaniFIS is a mamfistype2 object

sugenoFIS:

• Has constant output membership functions, whose values correspond to the centroids of the
output membership functions in mamdaniFIS
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• Uses the weighted-average defuzzification method
• Uses the product implication method
• Uses the sum aggregation method

The remaining properties of sugenoFIS, including the input membership functions and rule
definitions remain unchanged from mamdaniFIS.

Tips
• If you have a functioning Mamdani fuzzy inference system, consider using convertToSugeno to

convert to a more computationally efficient Sugeno structure to improve performance.

See Also
Functions
mamfis | mamfistype2 | sugfis | sugfistype2

Apps
Fuzzy Logic Designer

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2

Introduced in R2018b
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convertToType1
Convert type-2 fuzzy inference system into type-1 fuzzy inference system

Syntax
fisT1 = convertToType1(fisT2)

Description
fisT1 = convertToType1(fisT2) converts the type-2 fuzzy inference system fisT2 into a type-1
fuzzy inference system fisT1.

Examples

Convert Type-2 FIS to Type-1 FIS

Create a type-2 fuzzy inference system. For this example, Create a type-2 Mamdani FIS with two
inputs, one output.

fisT2 = mamfistype2("NumInputs",2,"NumOutputs",1);

View the membership function for the first input variable.

plotmf(fisT2,"input",1)
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Convert fisT2 into a type-1 fuzzy inference system.

fisT1 = convertToType1(fisT2);

View the converted membership functions for the first input variable.

plotmf(fisT1,"input",1)
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Input Arguments
fisT2 — Type-2 fuzzy inference system
mamfistype2 object | sugfistype2 object

Type-2 fuzzy inference system, specified as a mamfistype2 or sugfistype2 object.

Output Arguments
fisT1 — Type-1 fuzzy inference system
mamfis object | sugfis object

Type-1 fuzzy inference system, returned as one of the following:

• mamfis object when fisT2 is a mamfistype2 object
• sugfis object when fisT2 is a sugfistype2 object

The properties of fisT1 match the corresponding properties of fisT2, except that each type-2
membership function is converted to a type-1 membership function. The parameters of each type-1
membership function in fisT1 match the upper membership function parameters of the
corresponding type-2 membership function in fisT2.
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See Also
convertToSugeno | convertToType2

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
“Type-2 Fuzzy Inference Systems” on page 2-7

Introduced in R2019b
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convertToType2
Convert type-1 fuzzy inference system into type-2 fuzzy inference system

Syntax
fisT2 = convertToType2(fisT1)

Description
fisT2 = convertToType2(fisT1) converts the type-1 fuzzy inference system fisT1 into a type-2
fuzzy inference system fisT2.

Examples

Convert Type-1 FIS to Type-2 FIS

Create a type-1 fuzzy inference system. For this example, load the tipper.fis file.

fisT1 = readfis('tipper');

View the membership function for the first input variable.

plotmf(fisT1,"input",1)

 convertToType2

8-55



Convert fisT1 into a type-2 fuzzy inference system.

fisT2 = convertToType2(fisT1);

View the converted membership functions for the first input variable.

plotmf(fisT2,"input",1)
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Create Type-2 Fuzzy Inference System from Data

To create a type-2 FIS from input/output data, you must first create a type-1 FIS using genfis.

Load training data and generate a FIS using subtractive clustering.

load clusterdemo.dat
inputData = clusterdemo(:,1:2);
outputData = clusterdemo(:,3);
opt = genfisOptions('SubtractiveClustering',...
                    'ClusterInfluenceRange',[0.5 0.25 0.3]);
fisT1 = genfis(inputData,outputData,opt);
fisT1.Outputs

ans = 
  fisvar with properties:

                   Name: "out1"
                  Range: [-0.1274 1.1458]
    MembershipFunctions: [1x3 fismf]

Convert the generated FIS to a type-2 FIS.

fisT2 = convertToType2(fisT1);
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Since the initial type-1 FIS is a Sugeno system, only the input MFs are converted to type-2 MFs.

Input Arguments
fisT1 — Type-1 fuzzy inference system
mamfis object | sugfis object

Type-1 fuzzy inference system, specified as a mamfis or sugfis object.

Output Arguments
fisT2 — Type-2 fuzzy inference system
mamfistype2 object | sugfistype2 object

Type-2 fuzzy inference system, returned as one of the following:

• mamfistype2 object when fisT1 is a mamfis object
• sugfistype2 object when fisT1 is a sugfis object

The properties of fisT2 match the corresponding properties of fisT1, except that each type-1
membership function (except for Sugeno output membership functions) is converted to a type-2
membership function. The upper membership function parameters of each type-2 membership
function in fisT2 match the membership function parameters of the corresponding type-1
membership function in fisT1.

fisT2 has default LowerScale and LowerLag values and uses the default "karnikmendel" type
reduction method.

See Also
convertToSugeno | convertToType1

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
“Type-2 Fuzzy Inference Systems” on page 2-7

Introduced in R2019b
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defuzz
Defuzzify membership function

Syntax
output = defuzz(x,mf,method)

Description
output = defuzz(x,mf,method) returns the defuzzified output value for membership function mf
at the variable values in x using the specified defuzzification method.

Examples

Obtain Defuzzified Value
x = -10:0.1:10;
mf = trapmf(x,[-10 -8 -4 7]);
out = defuzz(x,mf,'centroid')

out = -3.2857

Input Arguments
x — Variable values
vector

Variable values,

mf — Membership function values
vector

Membership function values, specified as a vector with the same length as x. Each element of mf
contains a fuzzy membership value for the corresponding variable value in x.

method — Defuzzification method
'centroid' | 'bisector' | 'mom' | 'lom' | 'som' | character vector | string

Defuzzification method, specified as one of the following:

• 'centroid' — Centroid of the area under the output fuzzy set
• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum
• Character vector or string that contains the name of a custom function in the current working

folder or on the MATLAB path
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For more information on:

• The built-in defuzzification methods, see “Defuzzification Methods” on page 1-29.
• Custom defuzzification methods, see “Build Fuzzy Systems Using Custom Functions” on page 2-40

Output Arguments
output — Defuzzified output value
scalar

Defuzzified output value, returned as a scalar.

See Also
Fuzzy Logic Designer

Topics
“Foundations of Fuzzy Logic” on page 1-8
“Fuzzy Inference Process” on page 1-21
“Defuzzification Methods” on page 1-29

Introduced before R2006a
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dsigmf
Difference between two sigmoidal membership functions

Syntax
y = dsigmf(x,params)

Description
This function computes fuzzy membership values using the difference between two sigmoidal
membership functions. You can also compute this membership function using a fismf object. For
more information, see “fismf Object” on page 8-63.

This membership function is related to the sigmf and psigmf membership functions.

y = dsigmf(x,params) returns fuzzy membership values computed using the difference between
two sigmoidal membership functions. Each sigmoidal function is given by:

f x; a, c = 1
1 + e−a(x− c)

To specify the a and c parameters for each sigmoidal function, use params.

Membership values are computed for each input value in x.

Examples

Obtain Difference of Two Sigmoidal Functions

x = 0:0.1:10;
y = dsigmf(x,[5 2 5 7]);
plot(x,y)
xlabel('dsigmf, P = [5 2 5 7]')
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [a1 c1 a2 c2]. Here, a1 and c1 are the
parameters of the first sigmoidal function, and a2 and c2 are the parameters of the second sigmoidal
function.

For each sigmoidal function, to open the function to the left or right, specify a negative or positive
value for a, respectively. The magnitude of a defines the width of the transition area, and parameter c
defines the center of the transition area.

To define a unimodal membership function with a maximum value of 1, specify the same signs for a1
and a2, and select c values far enough apart to allow for both transition areas to reach 1.
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Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the dsigmf membership function.

mf = fismf("dsigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of dsigmf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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evalfis
Evaluate fuzzy inference system

Syntax
output = evalfis(fis,input)
output = evalfis(fis,input,options)
[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis( ___ )

Description
output = evalfis(fis,input) evaluates the fuzzy inference system fis for the input values in
input and returns the resulting output values in output.

output = evalfis(fis,input,options) evaluates the fuzzy inference system using specified
evaluation options.

[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis( ___ ) returns
intermediate results from the fuzzy inference process. This syntax is not supported when fis is a
fistree object.

Examples

Evaluate Fuzzy Inference System

Load FIS.

fis = readfis('tipper');

Evaluate the FIS when the first input is 2 and the second input is 1.

output = evalfis(fis,[2 1])

output = 7.0169

Evaluate FIS for Multiple Input Combinations

Load FIS.

fis = readfis('tipper');

Specify the input combinations to evaluate using an array with one row per input combination.

input = [2 1;
         4 5;
         7 8];

Evaluate the FIS for the specified input combinations.
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output = evalfis(fis,input)

output = 3×1

    7.0169
   14.4585
   20.3414

Each row of output is the defuzzified output value for the corresponding row of input.

Specify Number of Output Samples for FIS Evaluation

Load FIS.

fis = readfis('tipper');

Create an evalfisOptions option set, specifying the number of samples in the output fuzzy sets.

options = evalfisOptions('NumSamplePoints',50);

Evaluate the FIS using this option set.

output = evalfis(fis,[2 1],options);

Evaluate Tree of Fuzzy Inference Systems

Create a pair of Mamdani fuzzy inference systems.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Define the connection between the two.

con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Create an evalfisOptions option set, specifying the number of samples in the output fuzzy sets.

options = evalfisOptions('NumSamplePoints',50);

Evaluate the fistree object using a specified input combination and this option set.

y = evalfis(tree,[0.5 0.2 0.7],options)

y = 0.1553
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Obtain Intermediate Fuzzy Inference Results

Load FIS.

fis = readfis('tipper');

Evaluate the FIS, and return the intermediate inference results.

[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis(fis,[2 1]);

You can examine the intermediate results to understand or visualize the fuzzy inference process. For
example, view the aggregated output fuzzy set, which is the fuzzy set that evalfis defuzzifies to find
the output value. Also, plot the defuzzified output value.

outputRange = linspace(fis.output.range(1),fis.output.range(2),length(aggregatedOut))'; 
plot(outputRange,aggregatedOut,[output output],[0 1])
xlabel('Tip')
ylabel('Output Membership')
legend('Aggregated output fuzzy set','Defuzzified output')

The length of aggregatedOutput corresponds to the number of sample points used to discretize
output fuzzy sets.
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Evaluate Type-2 Fuzzy Inference System

Create a type-2 Mamdani fuzzy inference system.

fis = mamfistype2('NumInputs',2,'NumOutputs',1);

Evaluate the FIS when the first input is 0.4 and the second input is 0.72.

output = evalfis(fis,[0.4 0.72])

output = 0.1509

The output of a type-2 FIS is a crisp value.

When you obtain intermediate fuzzy inference results for a type-2 FIS, you obtain intermediate
results generated using both upper and lower MF values. For example, obtain the intermediate
fuzzified input values.

[output,fuzzifiedInput] = evalfis(fis,[0.5 0.75]);

View the fuzzified input values.

fuzzifiedInput

fuzzifiedInput = 9×4

         0         0         0         0
    1.0000         0    1.0000         0
         0         0         0         0
         0    0.4000         0    0.2500
    1.0000    0.4000    1.0000    0.2500
         0    0.4000         0    0.2500
         0    0.4000         0    0.2500
    1.0000    0.4000    1.0000    0.2500
         0    0.4000         0    0.2500

The first two columns contain the fuzzified values of the first and second inputs based on the upper
MF for each input. The second two columns contain the fuzzified values for based on the lower MF
for each input.

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system to be evaluated, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system
• fistree object - Tree of interconnected fuzzy inference systems
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• Homogeneous structure created using getFISCodeGenerationData. For an example, see
“Generate Code for Fuzzy System Using MATLAB Coder” on page 6-10.

input — Input values
M-by-NU array

Input values, specified as an M-by-NU array, where NU is the number of input variables in fis and M
is the number of input combinations to evaluate.

evalfis supports double-precision or single-precision input values.

options — Evaluation options
evalfisOptions object

Evaluation options, specified as an evalfisOptions object.

Output Arguments
output — Output values
array

Output values, returned as an M-by-NY array, where NY is the number of output variables in fis.
evalfis evaluates fis for each row of input and returns the resulting defuzzified outputs in the
corresponding row of output.

fuzzifiedIn — Fuzzified input values
array

Fuzzified input values, returned as an array.

When fis is a type-1 fuzzy inference system, fuzzifiedIn is an NR-by-NU array, where NR is the
number of rules in fis. Element (i,j) of fuzzifiedIn is the value of the input membership function
for the jth input in the ith rule.

When fis is a type-2 fuzzy inference system, fuzzifiedIn is an NR-by-(2*NU) array. The first NU
columns contain the fuzzified values of the upper membership function for each rule, and the last NU
columns contain the fuzzified values from the lower membership functions.

If input specifies multiple input combinations, then fuzzifiedIn corresponds to the combination
in the last row of input.

For more information on fuzzifying input values, see “Fuzzify Inputs” on page 1-21.

This output argument is not supported when fis is a fistree object.

ruleOut — Rule outputs
array

Rule outputs, returned as an array. To obtain the output for each rule, evalfis applies the firing
strength from the rule antecedent to the output membership function using the implication method
specified in fis.

When fis is a type-1 Mamdani system, ruleOut is an NS-by-(NRNY) array, where NR is the number of
rules, NY is the number of outputs, and NS is the number of sample points used for evaluating output

8 Functions

8-68



variable ranges. Each column of ruleOut contains the output fuzzy set for one rule. The first NR
columns contain the rule outputs for the first output variable, the next NR columns correspond to the
second output variable, and so on.

When fis is a type-2 Mamdani system, ruleOut is an NS-by-(2*NR*NY) array. The first NR*NY
columns contain the rule outputs generated using upper membership functions, and the last NR*NY
columns contain the rule outputs generated using lower membership functions.

When fis is a type-1 Sugeno system, each rule output is a scalar value. In this case, ruleOut is an
NR-by-NY array. Element (j,k) of ruleOut is the value of the kth output variable for the jth rule.

When fis is a type-2 Sugeno system, ruleOut is an NR-by-(3*NY) array. The first NY columns contain
the rule output levels. The next NY columns contain the corresponding rule firing strengths generated
using upper membership functions. The last NY columns contain the rule firing strengths generated
using lower membership functions. For example, in a three-output system, columns 4 and 7 contain
the firing strengths for the output levels in column 1.

If input specifies multiple input combinations, then ruleOut corresponds to the combination in the
last row of input.

For more information on fuzzy implication, see “Apply Implication Method” on page 1-23.

This output argument is not supported when fis is a fistree object.

aggregatedOut — Aggregated output
array | row vector

Aggregated output for each output variable, returned as an array.

NS-by-NY array or a row vector of length NY. For each output variable, evalfis combines the
corresponding outputs from all the rules using the aggregation method specified in fis.

For a type-1 Mamdani system, the aggregate result for each output variable is a fuzzy set. In this
case, aggregatedOut is as an NS-by-NY array, where NY is the number of outputs and NS is the
number of sample points used for evaluating output variable ranges. Each column of
aggregatedOut contains the aggregate fuzzy set for one output variable.

For a type-2 Mamdani system, the aggregate result for each output variable is a fuzzy set. In this
case, aggregatedOut is as an NS-by-(2*NY) array. The first NY columns contain the aggregated
outputs generated using upper membership functions, and the last NY columns contain the
aggregated outputs generated using lower membership functions.

When fis is a type-1 Sugeno system, the aggregate result for each output variable is a scalar value.
In this case, aggregatedOut is a row vector of length NY, where element k is the sum of the rule
outputs for the kth output variable.

When fis is a type-2 Sugeno system, aggregatedOut is an NR-by-(3*NY) array. aggregatedOut
contains the same data as ruleOut with the columns sorted based on the output levels. For example,
in a three-output system, when the output levels in column 1 are sorted, the corresponding firing
strengths in columns 4 and 7 are adjusted accordingly.

If input specifies multiple input combinations, then aggregatedOut corresponds to the
combination in the last row of input.

For more information on fuzzy aggregation, see “Aggregate All Outputs” on page 1-24.
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This output argument is not supported when fis is a fistree object.

ruleFiring — Rule firing strengths
column vector | array

Rule firing strength, returned as a column vector or array. To obtain the firing strength for each rule,
evalfis evaluates the rule antecedents; that is, it applies fuzzy operator to the values of the
fuzzified inputs.

For a type-1 fuzzy system, ruleFiring is a column vector of length NR, where NR is the number of
rules, and element i is the firing strength of the ith rule.

For a type-2 fuzzy system, ruleFiring is an NR-by-2 array. The first column contains the rule firing
strengths generated using upper membership functions, and the second column contains the rule
firing strengths generated using lower membership functions.

If input specifies multiple input combinations, then ruleFiring corresponds to the combination in
the last row of input.

For more information on applying the fuzzy operator, see “Apply Fuzzy Operator” on page 1-22.

This output argument is not supported when fis is a fistree object.

Alternative Functionality
App

You can evaluate type-1 fuzzy inference systems using the Rule Viewer in the Fuzzy Logic Designer
app.

Simulink Block

You can evaluate fuzzy inference systems using the Fuzzy Logic Controller block. For more
information on mapping the arguments of evalfis to the Fuzzy Logic Controller block, see
“Simulate Fuzzy Inference Systems in Simulink” on page 5-2.

Compatibility Considerations
evalfis input argument order has changed
Behavior changed in R2018b

The order of input arguments for evalfis has changed, which requires updates to your code.

Update Code

Previously, to evaluate a fuzzy inference system, fis, you specified the input variable values, input,
as the first input argument. For example:

output = evalfis(input,fis);
output = evalfis(input,fis,options);

Update your code to specify the fuzzy inference system as the first input argument. For example:

output = evalfis(fis,input);
output = evalfis(fis,input,options);
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To specify the number of sample points for output fuzzy sets, you now use an
evalfisOptions object
Behavior changed in R2018a

To specify the number of sample points for output fuzzy sets, you now us an evalfisOptions object,
which requires updates to your code.

Update Code

Previously, to specify the number of sample points, numPts, to use when evaluating output fuzzy sets
of fuzzy inference system fis, you used an input argument. For example:

output = evalfis(input,fis,numPts);

Update your code to specify the number of sample points using an evalfisOptions object. For
example:

opt = evalfisOptions('NumSamplePoints',numPts);
output = evalfis(input,fis,opt);

evalfis diagnostic message behavior has changed
Behavior changed in R2018a

The diagnostic message behavior of the evalfis function has changed. Previously, the evalfis
function had the following behaviors for diagnostic conditions.

Diagnostic Condition Previous Behavior
Input values outside of their specified variable
ranges

MATLAB warning

No rules fired for a given output at the current
input values

MATLAB Command Window message

Empty output fuzzy sets MATLAB Command Window message

Starting in R2018a, these diagnostic conditions are reported as MATLAB warnings by default. You
can change this behavior by specifying the corresponding options in an evalfisOptions object.

Update Code

To disable the default warning messages, update your code to use an evalfisOptions object, and
specify the diagnostic message options. For example, disable the empty output fuzzy set message.

opt = evalfisOptions('EmptyOutputFuzzySetMessage',"none");
output = evalfis(input,fis,opt);

Intermediate fuzzy inference outputs for Sugeno systems are now analogous to outputs for
Mamdani systems
Behavior changed in R2018a

When evaluating a Sugeno system using the following syntax, the intermediate fuzzy inference results
are now analogous to the intermediate results for Mamdani systems.
[output,fuzzifiedInputs,ruleOutputs,aggregatedOutput] = evalfis(input,fis);

For a Sugeno system:
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• ruleOutputs now returns an array that contains the scalar output value for each rule; that is,
the product of the rule firing strength and the rule output level.

• aggregatedOutput now returns the sum of all the rule output values for each output variable.

Previously, for a Sugeno fuzzy system:

• ruleOutputs returned an array that contained the output level for each rule.
• aggregatedOutput returned an array that contained the firing strength for each rule.

Starting in R2018a, if your code returns intermediate fuzzy inference results when evaluating a
Sugeno system using evalfis, modify your code to use the new ruleOutputs and
aggregatedOutput results.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All evalfis syntaxes are supported for code generation. However, mamfis, sugfis, and
fistree objects are not supported. To use evalfis for code generation, you must convert your
FIS objects into homogeneous structures using getFISCodeGenerationData.

• Unlike the Fuzzy Logic Controller block, evalfis does not support fixed-point data for simulation
or code generation.

• When evaluating a fuzzy inference system in Simulink, it is recommended to not use evalfis or
evalfisOptions within a MATLAB Function block. Instead, evaluate your fuzzy inference system
using a Fuzzy Logic Controller block.

See Also
Functions
evalfisOptions | fistree | mamfis | sugfis

Topics
“Fuzzy Inference Process” on page 1-21
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced before R2006a
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evalmf
Evaluate fuzzy membership function

Syntax
y = evalmf(mfT1,x)

[yUpper,yLower] = evalmf(mfT2,x)

Description
y = evalmf(mfT1,x) evaluates one or more type-1 membership functions based on the input
values in x, returning the membership function values.

[yUpper,yLower] = evalmf(mfT2,x) evaluates one or more type-2 membership function based
on the input values in x, returning both the upper and lower membership function values.

Examples

Evaluate Membership Function

Evaluate a generalized bell-shaped membership function across a range of input values from 0
through 10.

x = 0:0.1:10;
mf = fismf("gbellmf",[2 4 6]);
y = evalmf(mf,x);

Plot the evaluation.

plot(x,y)
xlabel('gbellmf, P = [2 4 6]')
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Evaluate Multiple Membership Functions

Create a vector of three Gaussian membership functions.

mf = [fismf("gaussmf",[0.9 2.5],'Name',"low");
      fismf("gaussmf",[0.9 5],'Name',"medium");
      fismf("gaussmf",[0.9 7.55],'Name',"high")];

Specify the input range over which to evaluate the membership functions.

x = (-2:0.1:12)';

Evaluate the membership functions.

y = evalmf(mf,x);

Plot the evaluation results.

plot(x,y)
xlabel('Input (x)')
ylabel('Membership value (y)')
legend("low","medium","high")
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Evaluate Type-2 Membership Function

Create a triangular type-2 membership function.

mf = fismftype2("trimf",[5 7 9],'LowerLag',0.3,'LowerScale',0.8);

Evaluate the membership function across a range of input values from 0 through 10.

x = 0:0.1:10;
[yUpper,yLower] = evalmf(mf,x);

Plot the evaluated upper and lower MFs.

plot(x,yUpper,x,yLower)
legend('Upper MF','Lower MF','Location','northwest')
xlabel('Input')
ylabel('Membership value')
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Input Arguments
mfT1 — Type-1 membership function
fismf object | vector of fismf objects

Type-1 membership function, specified as a fismf object or a vector of such objects.

x — Input value
scalar | vector | 2-D matrix

Input value, specified as a scalar, vector, or 2-D matrix. If mf is a:

• Single fismf object, then you can specify x as a scalar, vector, or matrix
• Vector of fismf objects, then you can specify x as a scalar or vector

mfT2 — Type-2 membership function
fismftype2 object | array of fismftype2 objects

Type-2 membership function, specified as a fismftype2 object or a vector of such objects.

Output Arguments
y — Membership values for a type-1 membership function
scalar | vector | 2-D matrix
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Membership value for a type-1 membership function, returned as a scalar, vector, or 2-D matrix. If
mfT1 is a:

• Single fismf object, then y is a scalar, vector, or matrix with the same dimensions as x. Each
element of y is the evaluated membership value for the corresponding element of x.

• Vector of fismf objects, then y is an M-by-N matrix, where M and N are the lengths of mfT1 and
x, respectively. y(i,j) is the evaluated value of membership function mfT1(i) for input value x(j).

yUpper — Upper MF membership values for a type-2 membership function
scalar | vector | 2-D matrix

Upper MF membership value for a type-2 membership function, returned as a scalar, vector, or 2-D
matrix. If mfT2 is a:

• Single fismftype2 object, then y is a scalar, vector, or matrix with the same dimensions as x.
Each element of y is the evaluated membership value for the corresponding element of x.

• Vector of fismftype2 objects, then y is an M-by-N matrix, where M and N are the lengths of
mfT2 and x, respectively. y(i,j) is the evaluated value of membership function mfT2(i) for input
value x(j).

yLower — Lower MF membership values for a type-2 membership function
scalar | vector | 2-D matrix

Lower MF membership value for a type-2 membership function, returned as a scalar, vector, or 2-D
matrix. If mfT2 is a:

• Single fismftype2 object, then y is a scalar, vector, or matrix with the same dimensions as x.
Each element of y is the evaluated membership value for the corresponding element of x.

• Vector of fismftype2 objects, then y is an M-by-N matrix, where M and N are the lengths of
mfT2 and x, respectively. y(i,j) is the evaluated value of membership function mfT2(i) for input
value x(j).

Compatibility Considerations
evalmf now takes a fismf object as an input argument
Behavior changed in R2018b

evalmf now takes a fismf object as an input argument rather than the type and parameters of the
membership function. Also, you can now evaluate multiple membership functions by passing an array
of fismf objects to evalmf. There are differences between these approaches that require updates to
your code.

Update Code

Previously, you evaluated a membership function for given input values, x, by specifying the type of
membership function, type, and the membership functions parameters, params.

y = evalmf(x,params,type);

Update your code to first create a fismf object, mf. Then, pass this object to evalmf.

mf = fismf(type,params);
y = evalmf(mf,x);
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Also, previously, to evaluate multiple membership functions you called evalmf once for each
membership function.

y1 = evalmf(x,params1,type1);
y2 = evalmf(x,params2,type2);
y3 = evalmf(x,params3,type3);

Now, you can evaluate multiple membership functions by passing an array of fismf objects to
evalmf.

mf1 = fismf(type1,params1);
mf2 = fismf(type2,params2);
mf2 = fismf(type3,params3);
y = evalmf([mf1 mf2 mf3],x);

Here, y = [y1 y2 y3]';

See Also
fismf | fismftype2

Topics
“Foundations of Fuzzy Logic” on page 1-8

Introduced before R2006a
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fcm
Fuzzy c-means clustering

Syntax
[centers,U] = fcm(data,Nc)
[centers,U] = fcm(data,Nc,options)

[centers,U,objFunc] = fcm( ___ )

Description
[centers,U] = fcm(data,Nc) performs fuzzy c-means clustering on the given data and returns
Nc cluster centers.

[centers,U] = fcm(data,Nc,options) specifies additional clustering options.

[centers,U,objFunc] = fcm( ___ ) also returns the objective function values at each
optimization iteration for all of the previous syntaxes.

Examples

Cluster Data Using Fuzzy C-Means Clustering

Load data.

load fcmdata.dat

Find 2 clusters using fuzzy c-means clustering.

[centers,U] = fcm(fcmdata,2);

Iteration count = 1, obj. fcn = 8.970479
Iteration count = 2, obj. fcn = 7.197402
Iteration count = 3, obj. fcn = 6.325579
Iteration count = 4, obj. fcn = 4.586142
Iteration count = 5, obj. fcn = 3.893114
Iteration count = 6, obj. fcn = 3.810804
Iteration count = 7, obj. fcn = 3.799801
Iteration count = 8, obj. fcn = 3.797862
Iteration count = 9, obj. fcn = 3.797508
Iteration count = 10, obj. fcn = 3.797444
Iteration count = 11, obj. fcn = 3.797432
Iteration count = 12, obj. fcn = 3.797430

Classify each data point into the cluster with the largest membership value.

maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2,:) == maxU);

Plot the clustered data and cluster centers.
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plot(fcmdata(index1,1),fcmdata(index1,2),'ob')
hold on
plot(fcmdata(index2,1),fcmdata(index2,2),'or')
plot(centers(1,1),centers(1,2),'xb','MarkerSize',15,'LineWidth',3)
plot(centers(2,1),centers(2,2),'xr','MarkerSize',15,'LineWidth',3)
hold off

Specify Fuzzy Overlap Between Clusters

Create a random data set.

data = rand(100,2);

To increase the amount of fuzzy overlap between the clusters, specify a large fuzzy partition matrix
exponent.

options = [3.0 NaN NaN 0];

Cluster the data.

[centers,U] = fcm(data,2,options);
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Configure Clustering Termination Conditions

Load the clustering data.

load clusterdemo.dat

Set the clustering termination conditions such that the optimization stops when either of the
following occurs:

• The number of iterations reaches a maximum of 25.
• The objective function improves by less than 0.001 between two consecutive iterations.

options = [NaN 25 0.001 0];

The first option is NaN, which sets the fuzzy partition matrix exponent to its default value of 2. Setting
the fourth option to 0 suppresses the objective function display.

Cluster the data.

[centers,U,objFun] = fcm(clusterdemo,3,options);

To determine which termination condition stopped the clustering, view the objective function vector.

objFun

objFun = 13×1

   54.7257
   42.9867
   42.8554
   42.1857
   39.0857
   31.6814
   28.5736
   27.1806
   20.7359
   15.7147
      ⋮

The optimization stopped because the objective function improved by less than 0.001 between the
final two iterations.

Input Arguments
data — Data set to be clustered
matrix

Data set to be clustered, specified as a matrix with Nd rows, where Nd is the number of data points.
The number of columns in data is equal to the data dimensionality.

Nc — Number of clusters
integer greater than 1

Number of clusters to create, specified as an integer greater than 1.
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options — Clustering options
vector

Clustering options, specified as a vector with the following elements:

Option Description Default
options(
1)

Exponent for the fuzzy partition matrix, U, specified as a scalar greater
than 1.0. This option controls the amount of fuzzy overlap between
clusters, with larger values indicating a greater degree of overlap.

If your data set is wide with a lot of overlap between potential clusters,
then the calculated cluster centers might be very close to each other. In
this case, each data point has approximately the same degree of
membership in all clusters. To improve your clustering results, decrease
this value, which limits the amount of fuzzy overlap during clustering.

For an example of fuzzy overlap adjustment, see “Adjust Fuzzy Overlap in
Fuzzy C-Means Clustering” on page 4-7.

2.0

options(
2)

Maximum number of iterations, specified as a positive integer. 100

options(
3)

Minimum improvement in objective function between two consecutive
iterations, specified as a positive scalar.

1e-5

options(
4)

Information display flag indicating whether to display the objective
function value after each iteration, specified as one of the following:

• true — Display objective function.
• false — Do not display objective function.

true

If any element of options is NaN, the default value for that option is used.

The clustering process stops when the maximum number of iterations is reached or when the
objective function improvement between two consecutive iterations is less than the specified
minimum.

Output Arguments
centers — Cluster centers
matrix

Final cluster centers, returned as a matrix with Nc rows containing the coordinates of each cluster
center. The number of columns in centers is equal to the dimensionality of the data being clustered.

U — Fuzzy partition matrix
matrix

Fuzzy partition matrix, returned as a matrix with Nc rows and Nd columns. Element U(i,j) indicates
the degree of membership of the jth data point in the ith cluster. For a given data point, the sum of
the membership values for all clusters is one.

objFunc — Objective function values
vector
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Objective function values for each iteration, returned as a vector.

Tips
• To generate a fuzzy inference system using FCM clustering, use the genfis command. For

example, suppose you cluster your data using the following syntax:

[centers,U] = fcm(data,Nc,options);

where the first M columns of data correspond to input variables, and the remaining columns
correspond to output variables.

You can generate a fuzzy system using the same training data and FCM clustering configuration.
To do so:

1 Configure clustering options.

opt = genfisOptions('FCMClustering');
opt.NumClusters = Nc;
opt.Exponent = options(1);
opt.MaxNumIteration = options(2);
opt.MinImprovement = options(3);
opt.Verbose = options(4);

2 Extract the input and output variable data.

inputData = data(:,1:M);
outputData = data(:,M+1:end);

3 Generate the FIS structure.

fis = genfis(inputData,outputData,opt);

The fuzzy system, fis, contains one fuzzy rule for each cluster, and each input and output
variable has one membership function per cluster. For more information, see genfis and
genfisOptions.

Algorithms
Fuzzy c-means (FCM) is a clustering method that allows each data point to belong to multiple clusters
with varying degrees of membership.

FCM is based on the minimization of the following objective function

Jm = ∑
i = 1

D
∑

j = 1

N
μi j

m xi− c j
2,

where

• D is the number of data points.
• N is the number of clusters.
• m is fuzzy partition matrix exponent for controlling the degree of fuzzy overlap, with m > 1. Fuzzy

overlap refers to how fuzzy the boundaries between clusters are, that is the number of data points
that have significant membership in more than one cluster.
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• xi is the ith data point.
• cj is the center of the jth cluster.
• μij is the degree of membership of xi in the jth cluster. For a given data point, xi, the sum of the

membership values for all clusters is one.

fcm performs the following steps during clustering:

1 Randomly initialize the cluster membership values, μij.
2 Calculate the cluster centers:

c j =
∑

i = 1

D
μi j

mxi

∑
i = 1

D
μi j

m
.

3 Update μij according to the following:

μi j = 1

∑
k = 1

N xi− c j
xi− ck

2
m− 1

.

4 Calculate the objective function, Jm.
5 Repeat steps 2–4 until Jm improves by less than a specified minimum threshold or until after a

specified maximum number of iterations.

References
[1] Bezdec, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New

York, 1981.

See Also
findcluster | genfis

Topics
“Fuzzy Clustering” on page 4-2
“Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
“Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page 4-7

Introduced before R2006a
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findcluster
Open clustering tool

Syntax
findcluster
finscluster(fileName)

Description
findcluster opens a UI to implement either fuzzy c-means or fuzzy subtractive clustering. For
more information on:

• Clustering methods, see “Fuzzy Clustering” on page 4-2
• Using the Clustering tool, see “Data Clustering Using Clustering Tool” on page 4-38

finscluster(fileName) opens the UI, loads the data set in the file specified by fileName, and
plots the first two dimensions of the data.

Examples

Open Clustering Tool and Load Data Set

findcluster('clusterdemo.dat')

Input Arguments
fileName — Data file name
string | character vector

Data file name, specified as a string or character vector.

The data set file must have the extension .dat. Each line of the data set file contains one data point.
For example, if you have 5-dimensional data with 100 data points, the file contains 100 lines, and
each line contains five values.

Tips
• Using the Clustering tool, you can obtain only the computed cluster centers. To obtain additional

information for:

• Fuzzy c-means clustering, such as the fuzzy partition matrix, cluster the data using fcm.
• Subtractive clustering, such as the range of influence in each data dimension, cluster the data

using subclust.
• To use the same clustering data with either fcm or subclust, first load the data file into the

MATLABworkspace. For example, at the MATLAB command line, type:
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load clusterdemo.dat

See Also
fcm | subclust

Topics
“Fuzzy Clustering” on page 4-2
“Data Clustering Using Clustering Tool” on page 4-38

Introduced before R2006a
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fuzarith
Perform fuzzy arithmetic

Syntax
C = fuzarith(X,A,B,operator)

Description
C = fuzarith(X,A,B,operator) returns the fuzzy set C, which is the result of applying the
specified fuzzy operator to the fuzzy sets A and B. The operation is performed across the universe of
discourse X

Examples

Perform Fuzzy Arithmetic

Specify Gaussian and trapezoidal membership functions.

N = 501;
minX = -20;
maxX = 20;
x = linspace(minX,maxX,N);

A = trapmf(x,[-10 -2 1 3]);
B = gaussmf(x,[2 5]);

Evaluate the sum, difference, product, and quotient of A and B.

Csum = fuzarith(x,A,B,'sum');
Csub = fuzarith(x,A,B,'sub');
Cprod = fuzarith(x,A,B,'prod');
Cdiv = fuzarith(x,A,B,'div');

Plot the addition and subtraction results.

figure
subplot(2,1,1)
plot(x,A,'--',x,B,':',x,Csum,'c')
title('Fuzzy Addition, A+B')
legend('A','B','A+B')
subplot(2,1,2)
plot(x,A,'--',x,B,':',x,Csub,'c')
title('Fuzzy Subtraction, A-B')
legend('A','B','A-B')
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Plot the multiplication and division results.

figure
subplot(2,1,1)
plot(x,A,'--',x,B,':',x,Cprod,'c')
title('Fuzzy Multiplication, A*B')
legend('A','B','A*B')
subplot(2,1,2)
plot(x,A,'--',x,B,':',x,Cdiv,'c')
title('Fuzzy Division, A/B')
legend('A','B','A/B')
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Input Arguments
X — Universe of discourse
vector

Universe of discourse, specified as a vector.

A — Input fuzzy set
vector

Input fuzzy set, specified as a vector with the same length as X. Each element of A is the value of the
fuzzy set for the corresponding value of X.

A must be a convex fuzzy set. For more information, see “Algorithms” on page 8-90.

B — Input fuzzy set
vector

Input fuzzy set, specified as a vector with the same length as X. Each element of B is the value of the
fuzzy set for the corresponding value of X.

B must be a convex fuzzy set. For more information, see “Algorithms” on page 8-90.

operator — Fuzzy arithmetic operator
'sum' | 'sub' | 'prod' | 'div'
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Arithmetic operator, specified as one of the following:

• 'sum' — Fuzzy addition
• 'sub' — Fuzzy subtraction
• 'prod' — Fuzzy multiplication
• 'div' — Fuzzy division

For more information on fuzzy arithmetic operations, see “Algorithms” on page 8-90.

Note Fuzzy addition can generate the message "divide by zero". However, this warning does
not affect the accuracy of fuzarith.

Output Arguments
C — Output fuzzy set
column vector

Output fuzzy set, returned as a column vector with length equal to the length of X.

Algorithms
To perform fuzzy arithmetic operations, the fuzzy operands (input fuzzy sets A and B) must be convex
fuzzy sets. A fuzzy set is convex if, for each pair of points x1 and x2 in the universe of discourse X and
λ∈[0,1].

μ λx1 + 1− λ x2 ≥ min μ x1 , μ x2

An α-cut of a fuzzy set is the region in the universe of discourse for which the fuzzy set has a specific
membership value, α. For a convex fuzzy set, every α-cut defines a continuous region in the universe
of discourse.

fuzarith uses the continuous regions defined by the α-cuts of fuzzy sets A and B to compute the
corresponding α-cut of the output fuzzy set C. To do so, fuzarith uses interval arithmetic.

The following table shows how to compute the left and right boundaries of the output interval. Here:

• [AL AR] is the interval defined by the α-cut of fuzzy set A.
• [BL BR] is the interval defined by the α-cut of fuzzy set B.
• [CL CR] is the interval defined by the α-cut of fuzzy set C.

Interval Arithmetic Operator Definition
Addition: C = A+B CL = AL + BL

CR = AR + BR

Subtraction: C = A-B CL = AL− BR
CR = AR− BL

Multiplication: C = A*B CL = min AL ⋅ BL, AL ⋅ BR, AR ⋅ BL, AR ⋅ BR
CR = max AL ⋅ BL, AL ⋅ BR, AR ⋅ BL, AR ⋅ BR
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Interval Arithmetic Operator Definition
Division: C = A/B

CL = min
AL
BL

,
AL
BR

,
AR
BL

,
AR
BR

CR = max
AL
BL

,
AL
BR

,
AR
BL

,
AR
BR

See Also
Topics
“What Is Fuzzy Logic?” on page 1-3
“Foundations of Fuzzy Logic” on page 1-8

Introduced before R2006a
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gauss2mf
Gaussian combination membership function

Syntax
y = gauss2mf(x,params)

Description
This function computes fuzzy membership values using a combination of two Gaussian membership
functions. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-94.

y = gauss2mf(x,params) returns fuzzy membership values computed using a combination of two
Gaussian membership functions computed. Each Gaussian function defines the shape of one side of
the membership function and is given by:

f x; σ, c = e
− x− c 2

2σ2

To specify the standard deviation, σ, and mean, c, for each Gaussian function, use params.

Membership values are computed for each input value in x.

Examples

Gaussian Combination Membership Functions

x = [0:0.1:10]';
y1 = gauss2mf(x,[2 4 1 8]);
y2 = gauss2mf(x,[2 5 1 7]);
y3 = gauss2mf(x,[2 6 1 6]);
y4 = gauss2mf(x,[2 7 1 5]);
y5 = gauss2mf(x,[2 8 1 4]);
plot(x,[y1 y2 y3 y4 y5])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [σ1 c1 σ2 c2]. Here:

• σ1 and c1 are the standard deviation and mean of the left Gaussian function, respectively.
• σ2 and c2 are the standard deviation and mean of the right Gaussian function, respectively.

When c1 ≤ c2, the gauss2mf function reaches a maximum value of 1 over the range [c1, c2].

Otherwise, when c1> c2, the maximum value is less than one.

Output Arguments
y — Membership value
scalar | vector
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Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the gauss2mf membership function.

mf = fismf("gauss2mf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gauss2mf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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gaussmf
Gaussian membership function

Syntax
y = gaussmf(x,params)

Description
This function computes fuzzy membership values using a Gaussian membership function. You can also
compute this membership function using a fismf object. For more information, see “fismf Object” on
page 8-97.

A Gaussian membership function is not the same as a Gaussian probability distribution. For example,
a Gaussian membership function always has a maximum value of 1. For more information on
Gaussian probability distributions, see “Normal Distribution” (Statistics and Machine Learning
Toolbox).

y = gaussmf(x,params) returns fuzzy membership values computed using the following Gaussian
membership function:

f x; σ, c = e
− x− c 2

2σ2

To specify the standard deviation, σ, and mean, c, for the Gaussian function, use params.

Membership values are computed for each input value in x.

Examples

Gaussian Membership Function

x = 0:0.1:10;
y = gaussmf(x,[2 5]);
plot(x,y)
xlabel('gaussmf, P=[2 5]')
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [σ c], where σ is the standard deviation and
c is the mean.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.
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Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the gaussmf membership function.

mf = fismf("gaussmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gaussmf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gbellmf | pimf | psigmf | sigmf | smf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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gbellmf
Generalized bell-shaped membership function

Syntax
y = gbellmf(x,params)

Description
This function computes fuzzy membership values using a generalized bell-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-100.

y = gbellmf(x,params) returns fuzzy membership values computed using the following
generalized bell-shaped membership function:

f x; a, b, c = 1
1 + x− c

a
2b

To configure the membership function, specify parameters, a, b, and c using params.

Membership values are computed for each input value in x.

Examples

Generalized Bell-Shaped Membership Function

x = 0:0.1:10;
y = gbellmf(x,[2 4 6]);
plot(x,y)
xlabel('gbellmf, P=[2 4 6]')
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c].

Here:

• a defines the width of the membership function, where a larger value creates a wider membership
function.

• b defines the shape of the curve on either side of the central plateau, where a larger value creates
a more steep transition.

• c defines the center of the membership function.

Output Arguments
y — Membership value
scalar | vector
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Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the gbellmf membership function.

mf = fismf("gbellmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gbellmf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | pimf | psigmf | sigmf | smf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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genfis
Generate fuzzy inference system object from data

Syntax
fis = genfis(inputData,outputData)
fis = genfis(inputData,outputData,options)

Description
fis = genfis(inputData,outputData) returns a single-output Sugeno fuzzy inference system
(FIS) using a grid partition of the given input and output data.

fis = genfis(inputData,outputData,options) returns an FIS generated using the specified
input/output data and options. You can generate fuzzy systems using grid partitioning, subtractive
clustering, or fuzzy c-means (FCM) clustering.

Examples

Generate Fuzzy Inference System Using Default Options

Define training data.

inputData = [rand(10,1) 10*rand(10,1)-5];
outputData = rand(10,1);

Generate a fuzzy inference system.

fis = genfis(inputData,outputData);

The generated system, fis, is created using grid partitioning with default options.

Generate FIS Using Grid Partitioning

Define training data.

inputData = [rand(10,1) 10*rand(10,1)-5];
outputData = rand(10,1);

Create a default genfisOptions option set for grid partitioning.

opt = genfisOptions('GridPartition');

Specify the following input membership functions for the generated FIS:

• 3 Gaussian membership functions for the first input variable
• 5 triangular membership functions for the second input variable
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opt.NumMembershipFunctions = [3 5];
opt.InputMembershipFunctionType = ["gaussmf" "trimf"];

Generate the FIS.

fis = genfis(inputData,outputData,opt);

Plot the input membership functions. Each input variable has the specified number and type of input
membership functions, evenly distributed over their input range.

[x,mf] = plotmf(fis,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('input 1 (gaussmf)')
[x,mf] = plotmf(fis,'input',2);
subplot(2,1,2)
plot(x,mf)
xlabel('input 2 (trimf)')

Generate FIS Using Subtractive Clustering

Obtain input and output training data.

load clusterdemo.dat
inputData = clusterdemo(:,1:2);
outputData = clusterdemo(:,3);

8 Functions

8-102



Create a genfisOptions option set and specify the range of influence for each data dimension.
Specify 0.5 and 0.25 as the range of influence for the first and second input variables. Specify 0.3
as the range of influence for the output data.

opt = genfisOptions('SubtractiveClustering',...
                    'ClusterInfluenceRange',[0.5 0.25 0.3]);

Generate the FIS.

fis = genfis(inputData,outputData,opt);

The generated FIS contains one rule for each cluster.

showrule(fis)

ans = 3x83 char array
    '1. If (in1 is in1cluster1) and (in2 is in2cluster1) then (out1 is out1cluster1) (1)'
    '2. If (in1 is in1cluster2) and (in2 is in2cluster2) then (out1 is out1cluster2) (1)'
    '3. If (in1 is in1cluster3) and (in2 is in2cluster3) then (out1 is out1cluster3) (1)'

Generate FIS Using FCM Clustering

Obtain the input and output data.

load clusterdemo.dat
inputData = clusterdemo(:,1:2);
outputData = clusterdemo(:,3);

Create a genfisOptions option set for FCM Clustering, specifying a Mamdani FIS type.

opt = genfisOptions('FCMClustering','FISType','mamdani');

Specify the number of clusters.

opt.NumClusters = 3;

Suppress the display of iteration information to the Command Window.

opt.Verbose = 0;

Generate the FIS.

fis = genfis(inputData,outputData,opt);

The generated FIS contains one rule for each cluster.

showrule(fis)

ans = 3x83 char array
    '1. If (in1 is in1cluster1) and (in2 is in2cluster1) then (out1 is out1cluster1) (1)'
    '2. If (in1 is in1cluster2) and (in2 is in2cluster2) then (out1 is out1cluster2) (1)'
    '3. If (in1 is in1cluster3) and (in2 is in2cluster3) then (out1 is out1cluster3) (1)'

Plot the input and output membership functions.
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[x,mf] = plotmf(fis,'input',1);
subplot(3,1,1)
plot(x,mf)
xlabel('Membership Functions for Input 1')
[x,mf] = plotmf(fis,'input',2);
subplot(3,1,2)
plot(x,mf)
xlabel('Membership Functions for Input 2')
[x,mf] = plotmf(fis,'output',1);
subplot(3,1,3)
plot(x,mf)
xlabel('Membership Functions for Output')

Create Type-2 Fuzzy Inference System from Data

To create a type-2 FIS from input/output data, you must first create a type-1 FIS using genfis.

Load training data and generate a FIS using subtractive clustering.

load clusterdemo.dat
inputData = clusterdemo(:,1:2);
outputData = clusterdemo(:,3);
opt = genfisOptions('SubtractiveClustering',...
                    'ClusterInfluenceRange',[0.5 0.25 0.3]);
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fisT1 = genfis(inputData,outputData,opt);
fisT1.Outputs

ans = 
  fisvar with properties:

                   Name: "out1"
                  Range: [-0.1274 1.1458]
    MembershipFunctions: [1x3 fismf]

Convert the generated FIS to a type-2 FIS.

fisT2 = convertToType2(fisT1);

Since the initial type-1 FIS is a Sugeno system, only the input MFs are converted to type-2 MFs.

Input Arguments
inputData — Input data
array

Input data, specified as an N-column array, where N is the number of FIS inputs.

inputData and outputData must have the same number of rows.

outputData — Output data
array

Output data, specified as an M-column array, where M is the number of FIS outputs.

When using grid partitioning, outputData must have one column. If you specify more than one
column for grid partitioning, genfis uses the first column as the output data.

inputData and outputData must have the same number of rows.

options — FIS generation options
genfisOptions option set

FIS generation options, specified as a genfisOptions option set. If you do not specify options,
genfis uses a default grid partitioning option set.

You can generate fuzzy systems using one of the following methods, which you specify when you
create the option set:

• Grid partitioning — Generate input membership functions by uniformly partitioning the input
variable ranges, and create a single-output Sugeno fuzzy system. The fuzzy rule base contains one
rule for each input membership function combination.

options = genfisOptions('GridPartition');
• Subtractive clustering — Generate a Sugeno fuzzy system using membership functions and rules

derived from data clusters found using subtractive clustering of input and output data. For more
information on subtractive clustering, see subclust.

options = genfisOptions('SubtractiveClustering');
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• FCM Clustering — Generate a fuzzy system using membership function and rules derived from
data clusters found using FCM clustering of input and output data. For more information on FCM
clustering, see fcm.

options = genfisOptions('FCMClustering');

Output Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. The properties of fis depend on
the type of clustering used and the corresponding options.

Clus
teri
ng
Type

Fuzz
y
Syste
m
Type

Input Membership
Functions

Fuzzy Rules Output Membership
Functions

Grid
Parti
tioni
ng

Suge
no

Each input variable has
evenly distributed input
membership function.
Specify the number of
membership functions using
options.NumMembership
Functions. Specify the
membership function type
using
options.InputMembersh
ipFunctionType.

One rule for each input
membership function
combination. The
consequent of each rule
corresponds to a different
output membership
function.

One output membership
function for each fuzzy rule.
Specify the membership
function type using
options.OutputMembers
hipFunctionType.

Subt
racti
ve
Clus
terin
g

Suge
no

Each input variable has one
'gaussmf' input
membership function for
each fuzzy cluster.

One rule for each fuzzy
cluster

Each output variable has
one 'linear' output
membership function for
each fuzzy cluster.

FCM
Clus
terin
g

Mam
dani
or
Suge
no

Each input variable has one
'gaussmf' input
membership function for
each fuzzy cluster.

One rule for each fuzzy
cluster

Each output variable has
one output membership
function for each fuzzy
cluster. The membership
function type is 'gaussmf'
for Mamdani systems and
'linear' for Sugeno
systems.

If fis is a single-output Sugeno system, you can tune the membership function parameters using the
anfis function.

Generating a type-2 FIS is not supported by genfis. Instead, generating a type-1 FIS and convert it
using the convertToType2 function.
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Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
anfis | fcm | genfisOptions | subclust

Introduced in R2017a
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genfis1
(To be removed) Generate Fuzzy Inference System structure from data using grid partition

Note genfis1 will be removed in a future release. Use genfis instead. For more information, see
“Compatibility Considerations”.

Syntax
fismat = genfis1(data) 

fismat = genfis1(data,numMFs,inmftype,outmftype) 

Description
genfis1 generates a Sugeno-type FIS structure used as initial conditions (initialization of the
membership function parameters) for anfis training.

genfis1(data) generates a single-output Sugeno-type fuzzy inference system using a grid partition
on the data.

genfis1(data,numMFs,inmftype,outmftype) generates an FIS structure from a training data
set, data, with the number and type of input membership functions and the type of output
membership functions explicitly specified.

The arguments for genfis1 are as follows:

• data is the training data matrix, which must be entered with all but the last columns representing
input data, and the last column representing the single output.

• numMFs is a vector whose coordinates specify the number of membership functions associated
with each input. If you want the same number of membership functions to be associated with each
input, then specify numMFs as a single number.

• inmftype is a character array in which each row specifies the membership function type
associated with each input. This can be a character vector if the type of membership functions
associated with each input is the same.

• outmftype is a character vector that specifies the membership function type associated with the
output. There can only be one output, because this is a Sugeno-type system. The output
membership function type must be either linear or constant. The number of membership
functions associated with the output is the same as the number of rules generated by genfis1.

The default number of membership functions, numMFs, is 2; the default input membership function
type is 'gbellmf'; and the default output membership function type is 'linear'. These are used
whenever genfis1 is invoked without the last three arguments.

The following table summarizes the default inference methods.

Inference Method Default
AND prod
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Inference Method Default
OR max
Implication prod
Aggregation max
Defuzzification wtaver

Examples
Generate FIS Using Grid Partitioning

Generate a FIS using grid partitioning.

data = [rand(10,1) 10*rand(10,1)-5 rand(10,1)];
numMFs = [3 7];
mfType = char('pimf','trimf');
fismat = genfis1(data,numMFs,mfType);

To see the contents of fismat, use showfis(fismat).

Plot the FIS input membership functions.

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf)
xlabel('input 1 (pimf)')
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf)
xlabel('input 2 (trimf)')

Compatibility Considerations
genfis1 will be removed
Not recommended starting in R2017a

genfis1 will be removed in a future release. Use genfis instead. There are differences between
these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions set.

opt = genfisOptions('GridPartition');

You can modify the options using dot notation. Any options you do not modify remain at their default
values.

Then, update your code to use genfis. For example, if your code has the following form:

fis = genfis1(data,numMFs,inmftype,outmftype);

Use the following code instead:

opt = genfisOptions('GridPartition');
opt.NumMembershipFunctions = numMFs;
opt.InputMembershipFunctionType = inmftype;
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opt.OutputMembershipFunctionType = outmftype;
inputData = data(:,end-1);
outputData = data(:,end);
fis = genfis(inputData,outputData,opt);

See Also
anfis | genfis | genfis2 | genfis3

Introduced before R2006a

8 Functions

8-110



genfis2
(To be removed) Generate Fuzzy Inference System structure from data using subtractive clustering

Note genfis2 will be removed in a future release. Use genfis instead. For more information, see
“Compatibility Considerations”.

Syntax
fismat = genfis2(Xin,Xout,radii) 

fismat = genfis2(Xin,Xout,radii,xBounds) 

fismat = genfis2(Xin,Xout,radii,xBounds,options) 

fismat = genfis2(Xin,Xout,radii,xBounds,options,user_centers)

Description
genfis2 generates a Sugeno-type FIS structure using subtractive clustering and requires separate
sets of input and output data as input arguments. When there is only one output, genfis2 may be
used to generate an initial FIS for anfis training. genfis2 accomplishes this by extracting a set of
rules that models the data behavior.

The rule extraction method first uses the subclust function to determine the number of rules and
antecedent membership functions and then uses linear least squares estimation to determine each
rule's consequent equations. This function returns an FIS structure that contains a set of fuzzy rules
to cover the feature space.

The arguments for genfis2 are as follows:

• Xin is a matrix in which each row contains the input values of a data point.
• Xout is a matrix in which each row contains the output values of a data point.
• radii is a vector that specifies a cluster center's range of influence in each of the data

dimensions, assuming the data falls within a unit hyperbox.

For example, if the data dimension is 3 (e.g., Xin has two columns and Xout has one column),
radii = [0.5 0.4 0.3] specifies that the ranges of influence in the first, second, and third data
dimensions (i.e., the first column of Xin, the second column of Xin, and the column of Xout) are
0.5, 0.4, and 0.3 times the width of the data space, respectively. If radii is a scalar value, then
this scalar value is applied to all data dimensions, i.e., each cluster center has a spherical
neighborhood of influence with the given radius.

• xBounds is a 2-by-N optional matrix that specifies how to map the data in Xin and Xout into a
unit hyperbox, where N is the data (row) dimension. The first row of xBounds contains the
minimum axis range values and the second row contains the maximum axis range values for
scaling the data in each dimension.

For example, xBounds = [-10 0 -1; 10 50 1] specifies that data values in the first data dimension
are to be scaled from the range [-10 +10] into values in the range [0 1]; data values in the second
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data dimension are to be scaled from the range [0 50]; and data values in the third data dimension
are to be scaled from the range [-1 +1]. If xBounds is an empty matrix or not provided, then
xBounds defaults to the minimum and maximum data values found in each data dimension.

• options is an optional vector for specifying algorithm parameters to override the default values.
These parameters are explained in the help text for subclust. Default values are in place when
this argument is not specified.

• user_centers is an optional matrix for specifying custom cluster centers. user_centers has a
size of J-by-N where J is the number of clusters and N is the total number of inputs and outputs.

The input membership function type is 'gaussmf', and the output membership function type is
'linear'.

The following table summarizes the default inference methods.

Inference Method Default
AND prod
OR probor
Implication prod
Aggregation max
Defuzzification wtaver

Examples
Specify One Cluster Center Range of Influence For All Data Dimensions

Generate an FIS using subtractive clustering, and specify the cluster center range of influence.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,0.5);

fismat uses a range of influence of 0.5 for all data dimensions.

To see the contents of fismat, use showfis(fismat).

Plot the input membership functions.

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('Membership Functions for input 1')
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2)
plot(x,mf)
xlabel('Membership Functions for input 2')

Specify Cluster Center Range of Influence For Each Data Dimension

Suppose the input data has two columns, and the output data has one column. Specify 0.5 and 0.25
as the range of influence for the first and second input data columns. Specify 0.3 as the range of
influence for the output data.
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Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,[0.5 0.25 0.3]); 

Specify Data Hyperbox Scaling Range

Suppose the input data has two columns, and the output data has one column. Specify the scaling
range for the inputs and outputs to normalize the data into the [0 1] range. The ranges for the first
and second input data columns and the output data are: [-10 +10], [-5 +5], and [0 20].

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,0.5,[-10 -5 0;10 5 20]);

Here, the third input argument, 0.5, specifies the range of influence for all data dimensions. The
fourth input argument specifies the scaling range for the input and output data.

Compatibility Considerations
genfis2 will be removed
Not recommended starting in R2017a

genfis2 will be removed in a future release. Use genfis instead. There are differences between
these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions set.

opt = genfisOptions('SubtractiveClustering');

You can modify the options using dot notation. Any options you do not modify remain at their default
values.

Then, update your code to use genfis. For example, if your code has the following form:

fis = genfis2(inputData,outputData,radii,xBounds,options,userCenters);

Use the following code instead:

opt = genfisOptions('SubtractiveClustering');
opt.ClusterInfluenceRange = radii;
opt.DataScale = xBounds;
opt.SquashFactor = options(1);
opt.AcceptRatio = options(2);
opt.RejectRatio = options(3);
opt.Verbose = options(4);
opt.CustomClusterCenters = userCenters;
fis = genfis(inputData,outputData,opt);

See Also
anfis | genfis | genfis1 | genfis3 | subclust

Introduced before R2006a
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genfis3
(To be removed) Generate Fuzzy Inference System structure from data using FCM clustering

Note genfis3 will be removed in a future release. Use genfis instead. For more information, see
“Compatibility Considerations”.

Syntax
fismat = genfis3(Xin,Xout) 

fismat = genfis3(Xin,Xout,type) 

fismat = genfis3(Xin,Xout,type,cluster_n) 

fismat = genfis3(Xin,Xout,type,cluster_n,fcmoptions) 

Description
genfis3 generates an FIS using fuzzy c-means (FCM) clustering by extracting a set of rules that
models the data behavior. The function requires separate sets of input and output data as input
arguments. When there is only one output, you can use genfis3 to generate an initial FIS for anfis
training. The rule extraction method first uses the fcm function to determine the number of rules and
membership functions for the antecedents and consequents.

fismat = genfis3(Xin,Xout) generates a Sugeno-type FIS structure (fismat) given input data
Xin and output data Xout. The matrices Xin and Xout have one column per FIS input and output,
respectively.

fismat = genfis3(Xin,Xout,type) generates an FIS structure of the specified type, where
type is either 'mamdani' or 'sugeno'.

fismat = genfis3(Xin,Xout,type,cluster_n) generates an FIS structure of the specified
type and allows you to specify the number of clusters (cluster_n) to be generated by FCM.

The number of clusters determines the number of rules and membership functions in the generated
FIS. cluster_n must be an integer or 'auto'. When cluster_n is 'auto', the function uses the
subclust algorithm with a radii of 0.5 and the minimum and maximum values of Xin and Xout as
xBounds to find the number of clusters. See subclust for more information.

fismat = genfis3(Xin,Xout,type,cluster_n,fcmoptions) generates an FIS structure of
the specified type and number of clusters and uses the specified fcmoptions for the FCM
algorithm. If you omit fcmoptions, the function uses the default FCM values. See fcm for
information about these parameters.

The input membership function type is 'gaussmf'. By default, the output membership function type
is 'linear'. However, if you specify type as 'mamdani', then the output membership function type
is 'gaussmf'.

The following table summarizes the default inference methods.
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Inference Method Default
AND prod
OR probor
Implication prod
Aggregation sum
Defuzzification wtaver

Examples
Generate Sugeno-Type FIS and Specify Number of Clusters

Obtain the input and output data.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);

Generate a Sugeno-type FIS with 3 clusters.

opt = NaN(4,1);
opt(4) = 0;
fismat = genfis3(Xin,Xout,'sugeno',3,opt);

The fourth input argument specifies the number of clusters. The fifth input argument, opt, specifies
the options for the FCM algorithm. The NaN entries of opt specify default option values. opt(4)
turns off the display of iteration information at the command line.

To see the contents of fismat, use showfis(fismat).

Plot the input membership functions.

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf)
xlabel('Membership Functions for Input 1')
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf)
xlabel('Membership Functions for Input 2')

Compatibility Considerations
genfis3 will be removed
Not recommended starting in R2017a

genfis3 will be removed in a future release. Use genfis instead. There are differences between
these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions set.

opt = genfisOptions('FCMClustering');

You can modify the options using dot notation. Any options you do not modify remain at their default
values.
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Then, update your code to use genfis. For example, if your code has the following form:

fis = genfis3(inputData,outputData,type,cluster_n,fcmoptions);

Use the following code instead:

opt = genfisOptions('FCMClustering');
opt.FISType = type;
opt.NumClusters = cluster_n;
opt.Exponent = fcmoptions(1);
opt.MaxNumIteration = fcmoptions(2);
opt.MinImprovement = fcmoptions(3);
opt.Verbose = fcmoptions(4);
fis = genfis(inputData,outputData,opt);

See Also
anfis | fcm | genfis | genfis1 | genfis2

Introduced before R2006a
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genfisOptions
Option set for genfis command

Syntax
opt = genfisOptions(clusteringType)
opt = genfisOptions(clusteringType,Name,Value)

Description
opt = genfisOptions(clusteringType) creates a default option set for generating a fuzzy
inference system structure using genfis. The option set, opt, contains different options that depend
on the specified clustering algorithm, clusteringType. Use dot notation to modify this option set
for your specific application. Options that you do not modify retain their default values.

opt = genfisOptions(clusteringType,Name,Value) creates an option set with options
specified by one or more Name,Value pair arguments.

Examples

Specify Options for FIS Generation

Create a default option set for the grid partitioning generation method.

opt = genfisOptions('GridPartition');

Modify the options using dot notation. For example, specify 3 membership functions for the first input
and 4 membership functions for the second input.

opt.NumMembershipFunctions = [3 4];

You can also specify options when creating the option set. For example, create an option set for FCM
clustering using 4 clusters.

opt2 = genfisOptions('FCMClustering','NumClusters',4);

Input Arguments
clusteringType — Clustering method
'GridPartition' | 'SubtractiveClustering' | 'FCMClustering'

Clustering method for defining membership functions and fuzzy rules, specified as one of the
following:

• 'GridPartition' — Generate input membership functions by uniformly partitioning the input
variable ranges, and create a single-output Sugeno fuzzy system. The fuzzy rule base contains one
rule for each input membership function combination.
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• 'SubtractiveClustering' — Generate a Sugeno fuzzy system using membership functions
and rules derived from data clusters found using subtractive clustering of input and output data.
For more information on subtractive clustering, see subclust.

• 'FCMClustering' — Generate a fuzzy system using membership function and rules derived from
data clusters found using FCM clustering of input and output data. For more information on FCM
clustering, see fcm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'InputMembershipFunctionType','trimf' sets triangular input membership
functions for the grid partitioning algorithm.

Grid Partitioning Options

NumMembershipFunctions — Number of input membership functions
2 (default) | integer greater than 1 | vector of integers greater than 1

Number of input membership functions for each input variable, specified as the comma-separated
pair consisting of 'NumMembershipFunctions' and one of the following:

• Integer greater than 1 — Specify the same number of membership functions for all inputs.
• Vector of integer greater than 1 with length equal to the number of inputs — Specify a different

number of membership functions for each input.

InputMembershipFunctionType — Input membership function type
'gbellmf' (default) | 'gaussmf' | 'trimf' | 'trapmf' | character vector | string array | ...

Input membership function type, specified as the comma-separated pair consisting of
'InputMembershipFunctionType' and one of the following:

• Character vector or string — Specify one of the following membership function types for all
inputs.

Membership
function type

Description For more information

'gbellmf' Generalized bell-shaped
membership function

gbellmf

'gaussmf' Gaussian membership function gaussmf
'gauss2mf' Gaussian combination membership

function
gauss2mf

'trimf' Triangular membership function trimf
'trapmf' Trapezoidal membership function trapmf
'sigmf' Sigmoidal membership function sigmf
'dsigmf' Difference between two sigmoidal

membership functions
dsigmf
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Membership
function type

Description For more information

'psigmf' Product of two sigmoidal
membership functions

psigmf

'zmf' Z-shaped membership function zmf
'pimf' Pi-shaped membership function pimf
'smf' S-shaped membership function smf
Character vector or
string

Name of a custom membership
function in the current working
folder or on the MATLAB path

“Build Fuzzy Systems Using Custom
Functions” on page 2-40

• Character array or string array — Specify a different membership function type for each input. For
example, specify different membership functions for a three-input system:

["gbellmf","gaussmf","trimf"]

OutputMembershipFunctionType — Output membership function type
'linear' (default) | 'constant'

Output membership function type for a single-output Sugeno system, specified as the comma-
separated pair consisting of 'OutputMembershipFunctionType' and one of the following:

• 'linear' — The output of each rule is a linear function of the input variables, scaled by the
antecedent result value.

• 'constant' — The output of each rule is a constant, scaled by the antecedent result value.

Subtractive Clustering Options

ClusterInfluenceRange — Range of influence of the cluster center
0.5 (default) | scalar value in the range [0, 1] | vector

Range of influence of the cluster center for each input and output assuming the data falls within a
unit hyperbox, specified as the comma-separated pair consisting of 'ClusterInfluenceRange' one
of the following:

• Scalar value in the range [0 1] — Use the same influence range for all inputs and outputs.
• Vector — Use different influence ranges for each input and output.

Specifying a smaller range of influence usually creates more and smaller data clusters, producing
more fuzzy rules.

DataScale — Data scale factors
'auto' (default) | 2-by-N array

Data scale factors for normalizing input and output data into a unit hyperbox, specified as the
comma-separated pair consisting of 'DataScale' and a 2-by-N array, where N is the total number of
inputs and outputs. Each column of DataScale specifies the minimum value in the first row and the
maximum value in the second row for the corresponding input or output data set.

When DataScale is 'auto', the genfis command uses the actual minimum and maximum values in
the data to be clustered.
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SquashFactor — Squash factor
1.25 (default) | positive scalar

Squash factor for scaling the range of influence of cluster centers, specified as the comma-separated
pair consisting of 'SquashFactor' and a positive scalar. A smaller squash factor reduces the
potential for outlying points to be considered as part of a cluster, which usually creates more and
smaller data clusters.

AcceptRatio — Acceptance ratio
0.5 (default) | scalar value in the range [0, 1]

Acceptance ratio, defined as a fraction of the potential of the first cluster center, above which another
data point is accepted as a cluster center, specified as the comma-separated pair consisting of
'AcceptRatio' and a scalar value in the range [0, 1]. The acceptance ratio must be greater than
the rejection ratio.

RejectRatio — Rejection ratio
0.15 (default) | scalar value in the range [0, 1]

Rejection ratio, defined as a fraction of the potential of the first cluster center, below which another
data point is rejected as a cluster center, specified as the comma-separated pair consisting of
'RejectRatio' and a scalar value in the range [0, 1]. The rejection ratio must be less than
acceptance ratio.

Verbose — Information display flag
false (default) | true

Information display flag indicating whether to display progress information during clustering,
specified as the comma-separated pair consisting of 'Verbose' and one of the following:

• false — Do not display progress information.
• true — Display progress information.

CustomClusterCenters — Custom cluster centers
[] (default) | C-by-N array

Custom cluster centers, specified the comma-separated pair consisting of
'CustomClusterCenters' and as a C-by-N array, where C is the number of clusters and N is the
total number of inputs and outputs.

FCM Clustering Options

FISType — Fuzzy inference system type
'sugeno' (default) | 'mamdani'

Fuzzy inference system type, specified as the comma-separated pair consisting of 'FISType' and
one of the following:

• 'sugeno' — Sugeno-type fuzzy system
• 'mamdani' — Mamdani-type fuzzy system

For more information on the types of fuzzy inference systems, see “Mamdani and Sugeno Fuzzy
Inference Systems” on page 2-2.
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NumClusters — Number of clusters
'auto' | integer greater than 1

Number of clusters to create, specified as the comma-separated pair consisting of 'NumClusters'
and 'auto' or an integer greater than 1. When NumClusters is 'auto', the genfis command
estimates the number of clusters using subtractive clustering with a cluster influence range of 0.5.

NumClusters determines the number of rules and membership functions in the generated FIS.

Exponent — Exponent for the fuzzy partition matrix
2.0 (default) | scalar greater than 1.0

Exponent for the fuzzy partition matrix, specified as the comma-separated pair consisting of
'Exponent' and a scalar greater than 1.0. This option controls the amount of fuzzy overlap
between clusters, with larger values indicating a greater degree of overlap.

If your data set is wide with significant overlap between potential clusters, then the calculated cluster
centers can be very close to each other. In this case, each data point has approximately the same
degree of membership in all clusters. To improve your clustering results, decrease this value, which
limits the amount of fuzzy overlap during clustering.

For an example of fuzzy overlap adjustment, see “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering”
on page 4-7.

MaxNumIteration — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxNumIteration' and a positive integer.

MinImprovement — Minimum improvement in objective function
1e-5 (default) | positive scalar

Minimum improvement in objective function between two consecutive iterations, specified as the
comma-separated pair consisting of 'MinImprovement' and a positive scalar.

Verbose — Information display flag
true (default) | false

Information display flag indicating whether to display the objective function value after each
iteration, specified as the comma-separated pair consisting of 'Verbose' and one of the following:

• true — Display objective function.
• false — Do not display objective function.

Output Arguments
opt — Option set for genfis command
genfisOptions option set

Option set for genfis command, returned as a genfisOptions option set. The options in the option
set depend on the specified clusteringType.
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See Also
fcm | genfis | subclust

Introduced in R2017a
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gensurf
Generate fuzzy inference system output surface

Syntax
gensurf(fis)
gensurf(fis,options)
[X,Y,Z] = gensurf( ___ )

Description
gensurf(fis) generates the output surface for the fuzzy inference system, fis, plotting the first
output variable against the first two input variables. For fuzzy systems with more than two inputs, the
remaining input variables use the midpoints of their respective ranges as reference values.

gensurf(fis,options) generates the output surface using the specified options. To generate a
surface using different inputs or outputs, or to specify nondefault plotting options, use this syntax.

[X,Y,Z] = gensurf( ___ ) returns the variables that define the output surface for any of the
previous syntaxes and suppresses the surface plot.

Examples

Generate FIS Output Surface

Load a fuzzy inference system.

fis = readfis('tipper');

This fuzzy system has two inputs and one output.

Generate the output surface for the system.

gensurf(fis)
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Generate FIS Output Surface for Second Output

Load a fuzzy inference system with two inputs and two outputs.

fis = readfis('mam22.fis');

Create a surface generation option set, specifying the second output as the output to plot. By default,
this output is plotted against the first two input variables.

opt = gensurfOptions('OutputIndex',2);

Plot the surface, using the specified option set.

gensurf(fis,opt)
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Specify Reference Inputs for Surface Plot

Load a fuzzy inference system with four inputs and one output.

fis = readfis('slbb.fis');

Create a default gensurfOptions option set.

opt = gensurfOptions;

Specify plotting options to:

• Plot the output against the second and third input variable.
• Use 20 grid points for both inputs.
• Fix the first and fourth inputs at -0.5 and 0.1 respectively. Set the reference values for the

second and third inputs to NaN.

opt.InputIndex = [2 3];
opt.NumGridPoints = 20;
opt.ReferenceInputs = [-0.5 NaN NaN 0.1];

Plot the output surface.

gensurf(fis,opt)
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Return Surface Values and Suppress Plot

Load a fuzzy inference system.

fis = readfis('tipper');

Generate the output surface, returning the surface data.

[X,Y,Z] = gensurf(fis);

The output values, Z, are the FIS output evaluated at the corresponding X and Y grid points.

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
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• sugfistype2 object — Type-2 Sugeno fuzzy inference system

options — Surface generation options
gensurfOptions option set

Surface generation options, specified as a gensurfOptions option set.

Output Arguments
X — Grid values for first input variable
array | column vector

Grid values for first input variable, returned as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second inputs,
respectively; that is options.NumGridPoints = [N M]. Each column of X contains one grid
point value, repeated for every row.

• P-element column vector, where P is the number of grid points specified for a single input
variable; that is options.NumGridPoints = P. Each element of contains one grid point value.
This case applies when fis has only one input variable.

Y — Grid values for second input variable
array | []

Grid values for second input variable, returned as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second inputs
respectively; that is options.NumGridPoints = [N M]. Each row of Y contains one grid point
value, repeated for every column.

• [] when you specify only one input variable; that is, if you specify options.InputIndex as an
integer.

Z — Surface output values
array | vector

Surface output values for the output variable of fis specified by options.OutputIndex, returned
as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second inputs
respectively; that is options.NumGridPoints = [N M]. Each element of Z is the value of the
FIS output, evaluated at the corresponding X and Y input values. For example, for a two-input
system:

Z(i,j) = evalfis(fis,[X(i,j) Y(i,j)]);

• P-element column vector, where P is the number of grid points specified for a single input
variable; that is options.NumGridPoints = P. Each element of Z is the value of the FIS output
evaluated at the corresponding X input value.

When computing the value of Z, gensurf sets the values of any inputs not specified by
options.InputIndex to their corresponding reference values, as specified in
options.ReferenceInputs.
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Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
evalfis | gensurfOptions | surfview

Introduced before R2006a
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gensurfOptions
Option set for gensurf function

Syntax
opt = gensurfOptions
opt = gensurfOptions(Name,Value)

Description
opt = gensurfOptions creates a default option set for generating a fuzzy inference system output
surface using gensurf. Use dot notation to modify this option set for your specific application. Any
options that you do not modify retain their default values.

opt = gensurfOptions(Name,Value) creates an option set with options specified by one or more
Name,Value pair arguments.

Examples

Specify Options for Generating Output Surface

Create a default gensurfOptions option set.

opt = gensurfOptions;

Specify options using dot notation. For example, for a two-input, three-output fuzzy system, specify
options to:

• Plot the surface for the second output against the values of the first and third inputs.
• Specify a reference value of 0.25 for the second input variable.

opt.OutputIndex = 2;
opt.InputIndex = [1 3];
opt.ReferenceInputs = [NaN 0.25 NaN];

Any values you do not specify remain at their default values.

You can also specify one or more options when creating the option set. For example, create an option
set, specifying 25 grid points for both plotted input variables:

opt2 = gensurfOptions('NumGridPoints',25);

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'InputIndex',[2 3] plots the output against the second and third input variables using
a 3-D surface plot.

InputIndex — Indices of input variables
'auto' (default) | positive integer less than or equal to the number of inputs | two-element vector of
positive integers

Indices of input variables to plot the output against, specified as the comma-separated pair consisting
of 'InputIndex' and one of the following:

• Positive integer less than or equal to the number of inputs — Plot the output against a single input
using a 2-D plot.

• Two-element vector of positive integers — Plot the output against two input variables using a 3-D
surface plot.

When InputIndex is 'auto', gensurf uses the first two input variables by default.

OutputIndex — Index of output variable
'auto' (default) | positive integer less than or equal to the number of outputs

Index of output variable to plot, specified as the comma-separated pair consisting of 'OutputIndex'
and a positive integer less than or equal to the number of outputs.

When OutputIndex is 'auto', gensurf uses the first output variable by default.

NumGridPoints — Number of grid points to plot
15 (default) | integer greater than 1 | two-element vector of integers greater than 1

Number of grid points to plot, specified as the comma-separated pair consisting of
'NumGridPoints' and one of the following:

• Integer greater than 1 — Specify the number of grid points when using a single input variable, or
the same number of grid points for both inputs when using two inputs variables.

• Two-element vector of integers greater than 1 — Specify a different number of grid points for each
input variable.

If you specify InputIndex as an integer and NumGridPoints as a vector, then gensurf uses the
first element of NumGridPoints as the number of grid points for the specified input variable.

To plot a smoother surface, increase the number of grid points.

ReferenceInputs — Reference values for input variables
'auto' (default) | vector

Reference values for input variables not shown in the surface plot, specified as the comma-separated
pair consisting of 'ReferenceInputs' and a vector with length equal to the number of FIS inputs.
Specify NaN for the inputs specified in InputIndex.

When ReferenceInputs is 'auto', gensurf uses the midpoint of the range of each unused
variable as a reference value.

NumSamplePoints — Number of sample points
101 (default) | integer greater than 1
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Number of sample points to use when evaluating membership functions over the output variable
range, specified as the comma-separated pair consisting of 'NumSamplePoints' and an integer
greater than 1. For more information on membership function evaluation, see evalfis.

Note NumSamplePoints is not used by Sugeno-type systems.

Output Arguments
opt — Option set for gensurf command
gensurfOptions option set

Option set for gensurf command, returned as a gensurfOptions option set.

See Also
evalfis | gensurf

Introduced in R2017a
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getfis
(To be removed) Get fuzzy system properties

Note getfis will be removed in a future release. Access fuzzy inference system properties using dot
notation instead. For more information, see “Compatibility Considerations”.

Syntax
getfis(sys)

fisInfo = getfis(sys)
fisInfo = getfis(sys,fisProperty)

varInfo = getfis(sys,varType,varIndex)
varInfo = getfis(sys,varType,varIndex,varProperty)

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex)
mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex,mfProperty)

Description
getfis(sys) prints the properties of the specified fuzzy inference system, sys, to the Command
Window.

fisInfo = getfis(sys) returns the properties of the specified fuzzy inference system.

fisInfo = getfis(sys,fisProperty) returns the value of the specified property of the fuzzy
inference system.

varInfo = getfis(sys,varType,varIndex) returns the properties of the specified input or
output variable of a fuzzy inference system.

varInfo = getfis(sys,varType,varIndex,varProperty) returns the value of the specified
variable property.

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex) returns the properties of the
specified membership function of an input or output variable.

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex,mfProperty) returns the value of
the specified membership function property.

Examples

Display Properties of Fuzzy Inference System

Load a fuzzy inference system.

sys = readfis('tipper');
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Display the system properties.

getfis(sys)

      Name      = tipper
      Type      = mamdani
      NumInputs = 2
      InLabels  = 
            service
            food
      NumOutputs = 1
      OutLabels = 
            tip
      NumRules = 3
      AndMethod = min
      OrMethod = max
      ImpMethod = min
      AggMethod = max
      DefuzzMethod = centroid

Obtain Fuzzy Inference System Properties

Load fuzzy system.

sys = readfis('tipper');

Obtain the system properties.

prop = getfis(sys);

To obtain the value of a given property, specify the property name. For example, obtain the type of the
fuzzy system.

type = getfis(sys,'type');

Obtain Variable Properties

Load fuzzy system.

sys = readfis('tipper');

Obtain the properties of the first input variable.

prop = getfis(sys,'input',1);

To obtain the value of a given property, specify the property name. For example, obtain the range of
the output variable.

range = getfis(sys,'output',1,'range');

Obtain Membership Function Properties

Load fuzzy system.
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sys = readfis('tipper');

For the second input variable, obtain the properties of its first membership function.

prop = getfis(sys,'input',2,'mf',1);

To obtain the value of a given property, specify the property name. For example, obtain the
parameters of the second membership function of the output variable.

params = getfis(sys,'output',1,'mf',2,'params');

Input Arguments
sys — Fuzzy inference system
FIS structure

Fuzzy inference system, specified as an FIS structure.

fisProperty — Fuzzy inference system property
'name' | 'type' | 'numInputs' | 'numOutputs' | ...

Fuzzy inference system property, specified as one of the following:

• 'name' — FIS name
• 'type' — FIS type
• 'numInputs' — Number of inputs
• 'numOutputs'— Number of outputs
• 'numRules' — Number of fuzzy rules.
• 'andMethod' — And method
• 'orMethod' — Or method
• 'defuzzMethod' — Defuzzification method
• 'impMethod' — Implication method
• 'aggMethod' — Aggregation method
• 'ruleList' — List of fuzzy rules

varType — Variable type
'input' | 'output'

Variable type, specified as either 'input' or 'output', for input and output variables, respectively.

varIndex — Variable index
positive integer

Variable index, specified as a positive integer.

varProperty — Variable property
'name' | 'range' | 'nummfs'

Variable property, specified as one of the following:

• 'name' — Variable name
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• 'range' — Variable value range
• 'nummfs' — Number of membership functions

mfIndex — Membership function index
positive integer

Membership function index, specified as a positive integer.

mfProperty — Membership function property
'name' | 'type' | 'params'

Membership function property, specified as one of the following:

• 'name' — Membership function name
• 'type' — Membership function type
• 'params' — Membership function parameters

For more information on membership functions, see “Membership Functions” on page 1-11.

Output Arguments
fisInfo — Fuzzy inference system information
structure | character vector | nonnegative integer | array

Fuzzy inference system information, returned as a structure, character vector, nonnegative integer, or
array, depending on the value of fisProperty.

If you do not specify fisProperty, then fisInfo is returned as a structure with the following
fields.

Field Description
name FIS name, returned as a character vector.
type FIS type, returned as a character vector.
andMethod AND fuzzy operator method, returned as a character vector.
orMethod OR fuzzy operator method, returned as a character vector.
defuzzMethod Defuzzification method, returned as a character vector.
impMethod Implication method, returned as a character vector.
aggMethod Aggregation method, returned as a character vector.
input Input variable information, returned as a structure or structure array. Each

input variable structure contains the following fields:

• name — Variable name
• range — Variable range
• mf — Membership function names
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Field Description
output Output variable information, returned as a structure or structure array. Each

output variable structure contains the following fields:

• name — Variable name
• range — Variable range
• mf — Membership function names

rule Fuzzy rule list, returned as a structure or structure array. Each rule structure
contains the following fields:

• antecedent — Input membership function indices
• consequent — Output membership function indices
• weight — Rule weight
• connection — Fuzzy operator: 1 (AND), 2 (OR)

Otherwise, the value of fisInfo depends on the value of fisProperty according to the following
table.

fisProperty fisInfo
'name' FIS name, returned as a character vector.
'type' FIS type, returned as one of the following:

• 'mamdani' — Mamdani-type fuzzy system
• 'sugeno' — Sugeno-type fuzzy system

'numinputs' Number of input variables, returned as a nonnegative integer.
'numiutputs' Number of output variables, returned as a nonnegative integer.
'numrules' Number of fuzzy rules, returned as a nonnegative integer.
'andmethod' AND fuzzy operator method, returned as one of the following:

• 'min' — Minimum of fuzzified input values
• 'prod' — Product of fuzzified input values
• Character vector — Name of a custom AND function in the current

working folder or on the MATLAB path
'ormethod' OR fuzzy operator method, returned as one of the following:

• 'max' — Maximum of fuzzified input values
• 'probor' — Probabilistic OR of fuzzified input values
• Character vector — Name of a custom OR function in the current working

folder or on the MATLAB path
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fisProperty fisInfo
'defuzzmethod' Defuzzification method for computing crisp output values, returned as one of

the following for Mamdani systems:

• 'centroid' — Centroid of the area under the output fuzzy set
• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum

For Sugeno systems, specify the defuzzification method as one of the
following:

• 'wtaver' — Weighted average of all rule outputs
• 'wtsum' — Weighted sum of all rule outputs

The defuzzification method can also be returned as a character vector that
contains the name of a custom defuzzification function in the current
working folder or on the MATLAB path.

'impmethod' Implication method for computing consequent fuzzy set, returned as one of
the following:

• 'min' — Truncate the consequent membership function at the
antecedent result value.

• 'prod' — Scale the consequent membership function by the antecedent
result value.

• Character vector — Name of a custom implication function in the current
working folder or on the MATLAB path

'aggmethod' Aggregation method for combining rule consequents, returned as one of the
following:

• 'max' — Maximum of consequent fuzzy sets
• 'sum' — Sum of consequent fuzzy sets
• 'probor' — Probabilistic OR of consequent fuzzy sets
• Character vector — Name of a custom aggregation function in the current

working folder or on the MATLAB path.

 getfis

8-137



fisProperty fisInfo
'rulelist' Fuzzy rule list, returned as an array. For each fuzzy rule, the rule list

contains one row with the following columns:

• Nu columns of input membership function indices, where Nu is the
number of inputs. If a given variable is not included in a rule, the
corresponding column entry is 0. Negative values indicate a NOT
operation.

• Ny columns of output membership function indices, where Ny is the
number of outputs. If a given variable is not included in a rule, the
corresponding column entry is 0. Negative values indicate a NOT
operation.

• Rule weight
• Fuzzy operator: 1 (AND), 2 (OR)

varInfo — Variable information
structure | character vector | nonnegative integer | row vector of length 2

Variable information, returned as a structure, nonnegative integer, character vector, or row vector,
depending on the value of varProperty.

If you do not specify varProperty, then varInfo is returned as a structure with the following
fields.

Field Description
Name Variable name, returned as a character vector.
NumMFs Number of membership functions, returned as a nonnegative integer.
mf1, mf2, ..., mfN Membership function names, returned as character vectors. mfInfo contains

one field for each membership function.
range Variable range, returned as a row vector of length 2.

Otherwise, the value of varInfo depends on the value of varProperty according to the following
table.

varProperty varInfo
'name' Variable name, returned as a character vector.
'nummfs' Number of membership functions, returned as a nonnegative integer.
'range' Variable range, returned as a row vector of length 2.

mfInfo — Membership function information
structure | character vector | row vector

Membership function information, returned as a structure, character vector, or row vector, depending
on the value of mfProperty.

If you do not specify mfProperty, then mfInfo is returned as a structure with the following fields.
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Field Description
Name Membership function name, returned as a character vector.
Type Membership function type, returned as a character vector.
params Membership function parameters, returned as a row vector.

Otherwise, the value of mfInfo depends on the value of mfProperty according to the following
table.

mfProperty mfInfo
'name' Membership function name, returned as a character vector.
'type' Membership function type, returned as a character vector.
'params' Membership function parameters, returned as a row vector.

For more information on membership function, see “Membership Functions” on page 1-11.

Compatibility Considerations
getfis will be removed
Not recommended starting in R2018b

getfis will be removed in a future release. Access fuzzy inference system properties using dot
notation instead. There are differences between these approaches that require updates to your code.

Update Code

This table shows some typical usages of getfis for accessing fuzzy inference system properties and
how to update your code to use dot notation instead.

If your code has this form: Use this code instead:
get(fis,'andmethod') fis.AndMethod
getfis(fis,'input',1) fis.Inputs(1)
getfis(fis,'input',1,'name') fis.Inputs(1).Name
getfis(fis,'input',2,'mf',1) fis.Inputs(2).MembershipFunctions(1)
getfis(fis,'input',2,'mf',1,...
       params)

fis.Inputs(2).MembershipFunctions(1).Parameters

Previously, fuzzy inference systems were represented as structures. Now, fuzzy inference systems are
represented as objects. Fuzzy inference system object properties have different names than the
corresponding structure fields. For more information on fuzzy inference system objects, see mamfis
and sugfis.

See Also
setfis | showfis

Introduced before R2006a
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getTunableValues
Obtain values of tunable parameters from fuzzy inference system

Syntax
paramvals = getTunableValues(fis,paramset)

Description
paramvals = getTunableValues(fis,paramset) returns tunable parameter values of the fuzzy
inference system fis. To specify the parameter values to return, use paramset.

Examples

Obtain Values of Tunable Parameters from FIS

Create a fuzzy inference system, and define the tunable parameter settings of inputs, outputs, and
rules.

fis = mamfis('NumInputs',2,'NumOutputs',1);
[in,out,rule] = getTunableSettings(fis);

Obtain tunable parameter values of the inputs, outputs, and rules of the fuzzy inference system.

paramVals = getTunableValues(fis,[in;out;rule]);

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as a mamfis, sugfis, mamfistype2, sugfistype2, or fistree
object.

paramset — Tunable parameter settings
array

Tunable parameter settings, specified as an array of input, output, and rule parameter settings in the
input FIS. To obtain these parameter settings, use the getTunableSettings function with the input
fis.

paramset can be the input, output, or rule parameter settings, or any combination of these settings.

Output Arguments
paramvals — Tunable parameter values
array
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Tunable parameter values, returned as an array. The order of the values in paramvals matches the
order of the parameters in paramset.

You can modify these parameter values, and then set them in your FIS using setTunableValues.

See Also
getTunableSettings | mamfis | mamfistype2 | setTunableValues | sugfis | sugfistype2 |
tunefis

Introduced in R2019a
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getFISCodeGenerationData
Create homogeneous fuzzy inference system structure

Syntax
fisOut = getFISCodeGenerationData(fisIn)
fisOut = getFISCodeGenerationData(fisIn,'FuzzySetType',setType)

Description
To generate code for evaluating a fuzzy inference system using MATLAB Coder, you must convert
your fuzzy inference system object into a homogeneous structure using
getFISCodeGenerationData.

fisOut = getFISCodeGenerationData(fisIn) converts a type-1 fuzzy inference system fisIn
into a homogeneous structure fisOut. fisIn can be a FIS object or the name of a .fis file.

fisOut = getFISCodeGenerationData(fisIn,'FuzzySetType',setType) specifies the type
of membership functions used in fisIn.

Examples

Convert FIS Object into Homogeneous Structure

Create a fuzzy inference system. For this example, load a fuzzy system from a file.

fisObject = readfis('tipper');

Convert the resulting mamfis object into a homogeneous structure.

fisStructure = getFISCodeGenerationData(fisObject);

In this structure, if a field is a structure array, all the elements of that array are the same size. For
example, consider the elements of input variable array fisStructure.input.

fisStructure.input(1)

ans = struct with fields:
              name: 'service'
    origNameLength: 7
             range: [0 10]
                mf: [1x3 struct]
         origNumMF: 3

fisStructure.input(2)

ans = struct with fields:
              name: 'food   '
    origNameLength: 4
             range: [0 10]
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                mf: [1x3 struct]
         origNumMF: 2

The name fields are character vectors of the same length. Also, even though the second input variable
has only two membership functions, the mf fields both contain three membership function structures.
The original number of membership functions for a given input variable is stored in the origNumMF
field.

Load Fuzzy Inference System from File into Homogeneous Structure

Load the fuzzy inference system saved in the file tipper.fis into a homogeneous structure.

fis = getFISCodeGenerationData('tipper.fis');

Convert Type-2 FIS Object into Homogeneous Structure

Create a type-2 fuzzy inference system. For this example,create a default FIS with three inputs and
two outputs.

fisObject = mamfistype2('NumInputs',3,'NumOutputs',2);

Convert the resulting mamfistype2 object into a homogeneous structure.

fisStructure = getFISCodeGenerationData(fisObject,'FuzzySetType',"type2");

Input Arguments
fisIn — Input fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | string | character
vector

Input fuzzy inference system, specified as one of the following:

• mamfis, sugfis, mamfistype2, or sugfistype2 object. getFISCodeGenerationData
supports fuzzy inference system objects for simulation only.

• String or character vector specifying a .fis file in the current working folder or on the MATLAB
path. getFISCodeGenerationData supports fuzzy inference system file names for both
simulation and code generation.

If fisIn is either a mamfistype2 or sugfistype2 object, then you must specify the setType as
"type2".

When getFISCodeGenerationData loads a fuzzy system that uses custom functions, it writes
additional files to the current folder to support code generation for the custom functions.

setType — Type of membership functions
"type1" (default) | "type2"

Type of membership functions used in fisIn, specified as one of the following:
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• "type1" — Type-1 membership functions
• "type2" — Type-2 membership functions

Output Arguments
fisOut — Output fuzzy inference system
homogeneous structure

Output fuzzy inference system, returned as a homogeneous structure. In the homogeneous structure,
if a field is a structure array, all the elements of that array are the same size. For example, in the
input variable array fisOut.input:

• Names of all the variables are character vectors of the same length.
• Lengths of the membership function arrays for all variables are the same.

For any character vectors or structure arrays that are padded to increase their lengths, the original
lengths of these elements are saved within the structure.

The fisOut structure is different than the structure created using convertToStruct.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• getFISCodeGenerationData supports fuzzy inference system objects for simulation only. To
generate code for getFISCodeGenerationData, specify the input fuzzy inference system using
a file name.

• It is good practice to not use getFISCodeGenerationData within a MATLAB Function block.
This function is a utility function for generating code for evaluating a fuzzy inference system using
MATLAB Coder.

See Also
evalfis | evalfisOptions | mamfis | mamfistype2 | sugfis | sugfistype2

Introduced in R2018b
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getTunableSettings
Obtain tunable settings from fuzzy inference system

Syntax
in = getTunableSettings(fis)
[~,out] = getTunableSettings(fis)
[~,~,rule] = getTunableSettings(fis)
[in,out,rule] = getTunableSettings(fis)
[ ___ ] = getTunableSettings(fis,'AsymmetricLag',true)

Description
in = getTunableSettings(fis) returns tunable settings of input variables of the fuzzy system
fis.

[~,out] = getTunableSettings(fis) returns tunable settings of output variables of the fuzzy
system fis.

[~,~,rule] = getTunableSettings(fis) returns tunable settings of rules of the fuzzy system
fis.

[in,out,rule] = getTunableSettings(fis) returns tunable settings of inputs, outputs, and
rules of the fuzzy system fis.

[ ___ ] = getTunableSettings(fis,'AsymmetricLag',true) returns tunable settings which
allow asymmetric lower membership function lag values. This syntax is supported only when fis is a
type-2 fuzzy inference system.

Examples

Obtain Tunable Settings from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(tree)

in=4×1 object
  4x1 VariableSettings array with properties:
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    Type
    VariableName
    MembershipFunctions
    FISName

out=2×1 object
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

rule=18×1 object
  16x1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName
      ⋮

You can use dot notation to specify tunable settings.

For the first membership function of input 1:

• do not tune parameter 1,
• set the minimum ranges of the last two parameters to 0,
• and set the maximum ranges of the last two parameters to 1.

in(1).MembershipFunctions(1).Parameters.Free(1) = false;
in(1).MembershipFunctions(1).Parameters.Minimum(2:end) = 0;
in(1).MembershipFunctions(1).Parameters.Maximum(2:end) = 1;

For the first rule:

• set input 1 membership function index non-tunable,
• allow NOT logic for input 2 membership function index,
• and do not ignore output 1 membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Antecedent.AllowNot(2) = true;
rule(1).Consequent.AllowEmpty(1) = false;

Obtain Tunable Settings of Input and Output Variables from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];
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Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(tree)

in=4×1 object
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

out=2×1 object
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of output 2, set the maximum parameter range to 1.

out(2).MembershipFunctions(1).Parameters.Maximum = 1;

Obtain Tunable Settings of Input and Output Variables from Type-2 FIS

Create a type-2 fuzzy inference system.

fis = mamfistype2('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of the input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis);

You can use dot notation to specify the tunable settings of the membership functions of the input and
output variables.

For the first membership function of input 1, set the first and third upper membership function
parameters as tunable.

in(1).MembershipFunctions(1).UpperParameters.Free = [1 0 1];
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For the first membership function of input 2, set the tunable range of the lower membership function
scale to be between 0.7 and 0.9.

in(2).MembershipFunctions(1).LowerScale.Minimum = 0.7;
in(2).MembershipFunctions(1).LowerScale.Maximum = 0.9;

For the first membership function of output 1, set the tunable range of the lower membership
function lag to be between 0.1 and 0.4.

in(2).MembershipFunctions(1).LowerLag.Minimum = 0.1;
in(2).MembershipFunctions(1).LowerLag.Maximum = 0.4;

Specify Tunability of Parameter Settings

Create a fuzzy inference system, and define the tunable parameter settings of inputs, outputs, and
rules.

Create a FIS, and obtain its tunable settings.

fis = mamfis("NumInputs",2,"NumOutputs",2);
[in,out,rule] = getTunableSettings(fis);

You can specify all the input variables, output variables, or rules as tunable or nontunable. For
example, set all the output variable settings as nontunable.

out = setTunable(out,0);

You can set the tunability of individual variables or rules. For example, set the first input variable as
nontunable.

in(1) = setTunable(in(1),0);

You can set individual membership functions as nontunable. For example, set the first membership
function of input 2 as nontunable.

in(2).MembershipFunctions(1) = setTunable(in(2).MembershipFunctions(1),0);

You can also specify the tunability of a subset of variables or rules. For example, set the first two rules
as nontunable.

rule(1:2) = setTunable(rule(1:2),0);

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as a mamfis, sugfis, mamfistype2, sugfistype2, or fistree
object. The fuzzy system can be a fuzzy inference system or network of interconnected fuzzy
inference systems.
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Output Arguments
in — Tunable settings of input variables
array of VariableSettings objects

Tunable settings for input variables, returned as an array of VariableSettings objects. Each
VariableSettings object contains tunability settings for the input variable indicated by its
FISName and VariableName properties.

Specify the tunability settings of the membership functions for this variable, using its
MembershipFunctions property.

out — Tunable settings of output variables
array of VariableSettings objects

Tunable settings for input variables, returned as an array of VariableSettings objects. Each
VariableSettings object contains tunability settings for the output variable indicated by its
FISName and VariableName properties.

Specify the tunability settings of the membership functions for this variable, using its
MembershipFunctions property.

rule — Tunable settings of rules
array of RuleSettings objects

Tunable settings for rules, returned as an array of RuleSettings object. Each RuleSettings
object contain tunability settings for a rule from the FIS indicated by its FISName property.

Specify the tunability settings of the antecedent and consequent for this variable, using its
Antecedent and Consequent properties, respectively.

See Also
RuleSettings | VariableSettings | getTunableValues | setTunable | setTunableValues |
tunefis

Introduced in R2019a
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mam2sug
(To be removed) Transform Mamdani fuzzy inference system into Sugeno fuzzy inference system

Note mam2sug will be removed in a future release. Use convertToSugeno instead. For more
information, see “Compatibility Considerations”.

Syntax
sugFIS = mam2sug(mamFIS)

Description
sugFIS = mam2sug(mamFIS) transforms a Mamdani fuzzy inference system into a Sugeno fuzzy
inference system.

Examples

Transform Mamdani FIS into Sugeno FIS

Load a Mamdani fuzzy inference system.

mam_fismat = readfis('mam22.fis');

Convert this system to a Sugeno fuzzy inference system.

sug_fismat = mam2sug(mam_fismat);

Plot the output surfaces for both fuzzy systems.

subplot(2,2,1)
gensurf(mam_fismat)
title('Mamdani system (Output 1)')
subplot(2,2,2)
gensurf(sug_fismat)
title('Sugeno system (Output 1)')
subplot(2,2,3)
gensurf(mam_fismat,gensurfOptions('OutputIndex',2))
title('Mamdani system (Output 2)')
subplot(2,2,4)
gensurf(sug_fismat,gensurfOptions('OutputIndex',2))
title('Sugeno system (Output 2)')
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The output surfaces for both systems are similar.

Input Arguments
mamFIS — Mamdani fuzzy inference system
structure

Mamdani fuzzy inference system, specified as a structure. Construct mamFIS at the command line or
using the Fuzzy Logic Designer. For more information, see “Build Fuzzy Systems at the Command
Line” on page 2-31 and “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14.

Output Arguments
sugFIS — Sugeno fuzzy inference system
structure

Sugeno fuzzy inference system, returned as a structure. sugFIS:

• Has constant output membership functions, whose values correspond to the centroids of the
output membership functions in mamFIS

• Uses the weighted-average defuzzification method
• Uses the product implication method
• Uses the sum aggregation method
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The remaining properties of sugFIS, including the input membership functions and rule definitions
remain unchanged from mamFIS.

Tips
• If you have a functioning Mamdani fuzzy inference system, consider using mam2sug to convert to

a more computationally efficient Sugeno structure to improve performance.
• If sugFIS has a single output variable and you have appropriate measured input/output training

data, you can tune the membership function parameters of sugFIS using anfis.

Compatibility Considerations
mam2sug will be removed
Not recommended starting in R2018b

mam2sug will be removed in a future release. Use convertToSugeno instead. To update your code,
change the function name from mam2sug to convertToSugeno. The syntaxes are equivalent.

See Also
Fuzzy Logic Designer | convertToSugeno

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
“Build Fuzzy Systems at the Command Line” on page 2-31
“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14

Introduced before R2006a
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mf2mf
(To be removed) Translate parameters between membership functions

Note mf2mf will be removed in a future release. Convert membership functions using dot notation
on fismf objects instead. For more information, see “Compatibility Considerations”.

Syntax
outParams = mf2mf(inParams,inType,outType) 

Description
This function translates any built-in membership function type into another, in terms of its parameter
set. In principle, mf2mf mimics the symmetry points for both the new and old membership functions.

Note Occasionally this translation results in lost information, so that if the output parameters are
translated back into the original membership function type, the transformed membership function
does not look the same as it did originally.

The input arguments for mf2mf are as follows:

• inParams — Parameters of the membership function you are transforming from, specified as a
row vector.

• inType — Type of membership function you are transforming from.
• outType — Type of membership function you are transforming to.

You can specify inType and outType as any of the following membership functions types:

Membership
function type

Description For more information

'gbellmf' Generalized bell-shaped membership
function

gbellmf

'gaussmf' Gaussian membership function gaussmf
'gauss2mf' Gaussian combination membership

function
gauss2mf

'trimf' Triangular membership function trimf
'trapmf' Trapezoidal membership function trapmf
'sigmf Sigmoidal membership function sigmf
'dsigmf Difference between two sigmoidal

membership functions
dsigmf

'psigmf Product of two sigmoidal membership
functions

psigmf
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Membership
function type

Description For more information

'zmf' Z-shaped membership function zmf
'pimf' Pi-shaped membership function pimf
'smf' S-shaped membership function smf

Examples

Translate Parameters Between Membership Functions

x = 0:0.1:5;
mf1 = [1 2 3];
mf2 = mf2mf(mf1,'gbellmf','trimf');
plot(x,gbellmf(x,mf1),x,trimf(x,mf2))
legend('Generalized bell-shaped','Triangle-shaped','Location','South')
ylim([-0.05 1.05])

Compatibility Considerations
mf2mf will be removed
Not recommended starting in R2018b

8 Functions

8-154



mf2mf will be removed in a future release. Convert membership functions using dot notation on
fismf objects instead. There are differences between these approaches that require updates to your
code.

Update Code

Previously, to change the type of a membership function in a fuzzy inference system, you converted
the parameters using mf2mf.

fis = readfis('tipper');
oldType = fis.input(1).mf(1).type;
oldParams = fis.input(1).mf(1).params;
fis.input(1).mf(1).type = newType;
fis.input(1).mf(1).params = mf2mf(oldParams,oldType,newType);

Now, when you change the type of membership function, the parameters are converted automatically.

fis = readfis('tipper');
fis.Inputs(1).MembershipFunctions(1).Type = newType;

Previously, membership functions were represented as structures within a fuzzy inference system
structure. Now, membership functions are represented as fismf objects within mamfis and sugfis
objects. For more information on fuzzy inference system objects, see mamfis and sugfis.

See Also
dsigmf | evalmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trapmf | trimf | trimf | zmf

Topics
“Membership Functions” on page 1-11
“The Membership Function Editor” on page 2-20

Introduced before R2006a
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mfedit
Open Membership Function Editor

Syntax
mfedit
mfedit(fis)
mfedit(fileName)

Description
Using the Membership Function Editor, you specify the range of each input and output variables.
Then, for each variable, you define the number of membership functions, the type of each
membership function, and the membership function parameters.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Membership Function Editor. For more information on
interactively creating fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page
2-14.

mfedit opens the Membership Function Editor with no fuzzy inference system loaded.

mfedit(fis) opens the Membership Function Editor and loads the fuzzy inference system fis.

mfedit(fileName) opens the Membership Function Editor and loads a fuzzy inference system from
the file specified by fileName.

Examples

Open Membership Function Editor

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Membership Function Editor for this fuzzy system.

mfedit(fis)
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Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as either a mamfis or sugfis object in the MATLAB workspace.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b
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Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
Apps
Fuzzy Logic Designer

Functions
addMF | plotmf | ruleedit | ruleview | surfview

Topics
“Membership Functions” on page 1-11
“The Membership Function Editor” on page 2-20

Introduced before R2006a
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newfis
(To be removed) Create new fuzzy inference system

Note newfis will be removed in a future release. Use mamfis or sugfis instead. For more
information, see “Compatibility Considerations”.

Syntax
fis = newfis(name)
fis = newfis(name,Name,Value)

Description
fis = newfis(name) returns a default Mamdani fuzzy inference system with the specified name.

fis = newfis(name,Name,Value) returns a fuzzy inference system with properties specified
using one or more Name,Value pair arguments.

Examples

Create Fuzzy Inference System

Create a default Mamdani fuzzy inference system with the name, 'fis'.

sys = newfis('fis')

sys = struct with fields:
            name: 'fis'
            type: 'mamdani'
       andMethod: 'min'
        orMethod: 'max'
    defuzzMethod: 'centroid'
       impMethod: 'min'
       aggMethod: 'max'
           input: []
          output: []
            rule: []

Create Sugeno Fuzzy Inference System

Create a default Sugeno fuzzy inference system with the name, 'fis'.

sys = newfis('fis','FISType','sugeno')

sys = struct with fields:
            name: 'fis'
            type: 'sugeno'
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       andMethod: 'prod'
        orMethod: 'probor'
    defuzzMethod: 'wtaver'
       impMethod: 'prod'
       aggMethod: 'sum'
           input: []
          output: []
            rule: []

Specify Implication Methods for New Fuzzy Inference System

Create a Mamdani fuzzy inference system that uses 'bisector' defuzzification and 'prod'
implication.

sys = newfis('fis','DefuzzificationMethod','bisector',...
                   'ImplicationMethod','prod');

Input Arguments
name — Fuzzy inference system name
character vector | string

Fuzzy inference system name, specified as a character vector or string.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'OrMethod','probor' configures the fuzzy OR operator as a probabilistic OR function.

FISType — Fuzzy inference system type
'mamdani' (default) | 'sugeno'

Fuzzy inference system type, specified as one of the following:

• 'mamdani' — Mamdani-type fuzzy system
• 'sugeno' — Sugeno-type fuzzy system

For more information on the types of fuzzy inference systems, see “Mamdani and Sugeno Fuzzy
Inference Systems” on page 2-2.

AndMethod — AND fuzzy operator method
'min' | 'prod' | character vector | string

AND fuzzy operator method, specified as one of the following:

• 'min' — Minimum of fuzzified input values. This method is the default when FISType is
'mamdani'.

• 'prod' — Product of fuzzified input values. This method is the default when FISType is
'sugeno'.
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• Character vector or string — Name of a custom AND function in the current working folder or on
the MATLAB path. For more information on using custom functions, see “Build Fuzzy Systems
Using Custom Functions” on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

OrMethod — OR fuzzy operator method
'max' | 'probor' | character vector | string

OR fuzzy operator method, specified as one of the following:

• 'max' — Maximum of fuzzified input values. This method is the default when FISType is
'mamdani'.

• 'probor' — Probabilistic OR of fuzzified input values. For more information, see probor. This
method is the default when FISType is 'sugeno'.

• Character vector or string — Name of a custom OR function in the current working folder or on
the MATLAB path. For more information on using custom functions, see “Build Fuzzy Systems
Using Custom Functions” on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

ImplicationMethod — Implication method
'min' | 'prod' | character vector | string

Implication method for computing consequent fuzzy set, specified as one of the following:

• 'min' — Truncate the consequent membership function at the antecedent result value. This
method is the default when FISType is 'mamdani'.

• 'prod' — Scale the consequent membership function by the antecedent result value. This method
is the default when FISType is 'sugeno'.

• Character vector or string — Name of a custom implication function in the current working folder
or on the MATLAB path. For more information on using custom functions, see “Build Fuzzy
Systems Using Custom Functions” on page 2-40.

Note No matter what implication method you specify, Sugeno systems always use 'prod'
aggregation.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

AggregationMethod — Aggregation method
'max' | 'sum' | character vector | string

Aggregation method for combining rule consequents, specified as one of the following:

• 'max' — Maximum of consequent fuzzy sets. This method is the default when FISType is
'mamdani'.

• 'sum' — Sum of consequent fuzzy sets. This method is the default when FISType is 'sugeno'.
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• 'probor' — Probabilistic OR of consequent fuzzy sets. For more information, see probor.
• Character vector or string — Name of a custom aggregation function in the current working folder

or on the MATLAB path. For more information on using custom functions, see “Build Fuzzy
Systems Using Custom Functions” on page 2-40.

Note No matter what aggregation method you specify, Sugeno systems always use 'sum'
aggregation.

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

DefuzzificationMethod — Defuzzification method
'centroid' | 'bisector' | 'mom' | 'lom' | 'som' | 'wtaver' | 'wtsum' | character vector |
string

Defuzzification method for computing crisp output values.

If FISType is 'mamdani', specify the defuzzification method as one of the following:

• 'centroid' — Centroid of the area under the output fuzzy set. This method is the default for
Mamdani systems.

• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum

If FISType is 'sugeno', specify the defuzzification method as one of the following:

• 'wtaver' — Weighted average of all rule outputs. This method is the default for Sugeno systems.
• 'wtsum' — Weighted sum of all rule outputs

You can also specify the defuzzification method using a character vector or string that contains the
name of a custom function in the current working folder or on the MATLAB path. For more
information on using custom functions, see “Build Fuzzy Systems Using Custom Functions” on page
2-40.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

Output Arguments
fis — Fuzzy inference system
FIS structure

Fuzzy inference system with the specified name, returned as an FIS structure. The fuzzy system is
configured using the specified Name,Value pair arguments.

fis has no input variables, output variables, or rules. To add variables or rules to fis, use addvar or
addRule. You can also edit the fuzzy system using Fuzzy Logic Designer.
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Compatibility Considerations
newfis will be removed
Not recommended starting in R2018b

newfis will be removed in a future release. Use mamfis or sugfis instead. There are differences
between these functions that require updates to your code.

To create a Mamdani or Sugeno FIS, use mamfis or sugfis, respectively.

Update Code

This table shows some typical usages of newfis for creating fuzzy systems and how to update your
code to use mamfis or sugfis instead.

If your code has this form: Use this code instead:
fis = newfis(name) fis = mamfis('Name',name)
fis = newfis(name,'FISType','mamdani') fis = mamfis('Name',name)
fis = newfis(name,'FISType','sugeno') fis = sugfis('Name',name)
fis = newfis(name,...
             'FISType','mamdani',...
             'AndMethod','prod')

fis = mamfis('Name',name,...
             'AndMethod','prod')

fis = newfis(name,...
             'FISType','sugeno',...
             'OrMethod','probor')

fis = sugfis('Name',name,...
             'OrMethod','probor')

See Also
mamfis | readfis | sugfis | writeFIS

Topics
“Foundations of Fuzzy Logic” on page 1-8
“Fuzzy Inference Process” on page 1-21

Introduced before R2006a
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parsrule
(To be removed) Parse fuzzy rules

Note parsrule will be removed in a future release. Use addRule instead. For more information,
see “Compatibility Considerations”.

Syntax
outFIS = parsrule(inFIS,ruleList)
outFIS = parsrule(inFIS,ruleList,Name,Value)

Description
outFIS = parsrule(inFIS,ruleList) returns a fuzzy inference system, outFIS, that is
equivalent to the input fuzzy system, inFIS. but with fuzzy rules replaced by the rules specified in
ruleList.

outFIS = parsrule(inFIS,ruleList,Name,Value) parses the rules in ruleList using options
specified by one or more Name,Value pair arguments.

Examples

Add Rules to Fuzzy Inference System

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify if-then rules using the default 'verbose' format.
rule1 = "If service is poor or food is rancid then tip is cheap";
rule2 = "If service is excellent and food is not rancid then tip is generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = parsrule(fis,rules);

fis2 is equivalent to fis, except that the rule base is replaced with the specified rules.

Add Rules Using Symbolic Expressions

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify the following rules using symbols:
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• If service is poor or food is rancid then tip is cheap.
• If service is excellent and food is not rancid then tip is generous.

rule1 = "service==poor | food==rancid => tip=cheap";
rule2 = "service==excellent & food~=rancid => tip=generous";
rules = [rule1 rule2];

Add the rules to the FIS using the 'symbolic' format.

fis2 = parsrule(fis,rules,'Format','symbolic');

Add Rules Using Membership Function Indices

Load fuzzy inference system (FIS).

fis = readfis('mam22.fis');

Specify the following rules using membership function indices:

• If angle is small and velocity is big, then force is negBig and force2 is posBig2.
• If angle is not small and velocity is small, then force is posSmall and force2 is

negSmall2.

rule1 = "1 2, 1 4 (1) : 1";
rule2 = "-1 1, 3 2 (1) : 1";
rules = [rule1 rule2];

Add rules to FIS using the 'indexed' format.

fis2 = parsrule(fis,rules,'Format','indexed');

Add Rules Using French Language

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify if-then rules using French keywords.
rule1 = "Si service est poor ou food est rancid alors tip est cheap";
rule2 = "Si service est excellent et food n''est_pas rancid alors tip est generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = parsrule(fis,rules,'Language','francais');

Add Single Rule to Fuzzy Inference System

Load a fuzzy inference system (FIS).

a = readfis('tipper');
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Add a rule to the FIS.

ruleTxt = 'If service is poor then tip is cheap';
a2 = parsrule(a,ruleTxt,'verbose');

Input Arguments
inFIS — Fuzzy inference system
FIS structure

Input fuzzy inference system, specified as an FIS structure. parsrule does not modify inFIS.

ruleList — Fuzzy rules
character array | string array | character vector | string

Fuzzy rules, specified as one of the following:

• Character array where each row corresponds to a rule. For example:
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

• String array, where each element corresponds to a rule. For example:
ruleList = ["If service is poor or food is rancid then tip is cheap";
            "If service is good then tip is average";
            "If service is excellent or food is delicious then tip is generous"];

• Character vector or string to specify a single rule.

You can change the rule format and language using the Format and Language options.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Format','symbolic' sets the rule format to symbolic expressions.

Format — Rule format
'verbose' (default) | 'symbolic' | 'indexed'

Rule format, specified as the comma-separated pair consisting 'Format' and one of the following:

• 'verbose' — Use linguistic expressions.

'If service is poor or food is rancid then tip is cheap 1'

Specify the rule weight at the end of the rule text. If you omit the weight, a default value of 1 is
used.

You can specify the rule language using the Language option.
• 'symbolic' — Use language-neutral symbolic expressions.

'service==poor | food==rancid => tip=cheap 1'

Specify symbolic expressions using the following symbols.
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Rule Component Symbol
AND &
OR |
IS (in antecedent) ==
IS (in consequent) =
IS NOT ~=
Implication (then) =>

Specify the rule weight at the end of the rule text. If you omit the weight, a default value of 1 is
used.

• 'indexed' — Use input and output membership function (MF) indices.

Specify indexed rules in the following format:
'<input MFs>, <output MFs>, (<weight>) : <logical operator - 1(AND), 2(OR)>'

For example:

'1 1, 1 (1) : 2'

To indicate NOT operations for input and output membership functions, use negative indices. For
example, to specify “not the second membership function,” use -2.

To indicate a don’t care condition for an input or output membership function, use 0.

Language — Rule language
'english' (default) | 'francais' | 'deutsch'

Rule language for 'verbose' format, specified as one of the following:

• 'english' — Specify rules in English.

'If service is poor or food is rancid then tip is cheap'

• 'francais' — Specify rules in French.

'Si service est poor ou food est rancid alors tip est cheap'

• 'deutsch' — Specify rules in German.

'Wenn service ist poor oder food ist rancid dann tip ist cheap'

The software parses the rules in ruleList using the following keywords.

Rule Component English French German
Start of antecedent if si wenn
AND and et und
OR or ou oder
Start of consequent
(implication)

then alors dann

IS is est ist
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Rule Component English French German
IS NOT is not n''est_pas ist nicht

Output Arguments
outFIS — Output fuzzy inference system
FIS structure

Fuzzy inference system, returned as an FIS structure. outFIS is the same as inFIS, except that the
rule list contains only the rules specified in ruleList.

Compatibility Considerations
parsrule will be removed
Not recommended starting in R2018b

parsrule will be removed in a future release. Use addRule instead.

Update Code

If you previously added rules using linguistic or symbolic expressions with parsrule, you can specify
rules using the same expressions with addrule. addRule automatically detects the format of the
strings or character vectors in your rule list. Therefore, it is no longer necessary to specify the rule
format. To add a rule list using addRule, use the following command:

fis = addRule(fis,rules);

Previously, you could add rules using indexed expressions with parsrule.

rule1 = "1 2, 1 4 (1) : 1";
rule2 = "-1 1, 3 2 (1) : 1";
rules = [rule1 rule2];
fis = parsrule(fis,rules,'Format','indexed');

Now, specify these rules using arrays of indices.

rule1 = [1 2 1 4 1 1];
rule2 = [-1 1 3 2 1 1];
rules = [rule1; rule2];
fis = addRule(fis,rules);

If you previously specified rules using the 'Lanuage' name-value pair argument with parsrule, this
functionality has been removed and there is no replacement. Specify your rules using addRule a
different rule format.

Previously, parsrule replaced the entire rule list in your fuzzy system. addRule appends your
specified rules to the rule list.

See Also
addRule | ruleedit | showrule

Introduced before R2006a
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pimf
Pi-shaped membership function

Syntax
y = pimf(x,params)

Description
This function computes fuzzy membership values using a spline-based pi-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-171.

This membership function is related to the smf and zmf membership functions.

y = pimf(x,params) returns fuzzy membership values computed using a spline-based pi-shaped
membership function. This membership function is the product of an smf function and a zmf
function, and is given by:

f (x; a, b, c, d) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, b ≤ x ≤ c

1− 2 x− c
d− c

2
,    c ≤ x ≤ c + d

2

   2 x− d
d− c

2
,      c + d

2 ≤ x ≤ d

          0,                     x ≥ d

To specify the a, b, c, and d parameters, use params.

Membership values are computed for each input value in x.

Examples

Pi-Shaped Membership Function

x = 0:0.1:10;
y = pimf(x,[1 4 5 10]);
plot(x,y)
xlabel('pimf, P = [1 4 5 10]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c d]. Parameters a and d define the feet
of the membership function, and b and c define its shoulders.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.
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Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the pimf membership function.

mf = fismf("pimf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of pimf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | psigmf | sigmf | smf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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plotfis
Display fuzzy inference system

Syntax
plotfis(fis)

Description
plotfis(fis) displays a high-level diagram of a fuzzy inference system (FIS). The center of the
display shows the name, type, and rule count for the FIS. The input variables with associated
membership functions are displayed to the right, and the outputs with their associated membership
functions are displayed on the left.

Examples

Display Fuzzy Inference System

Create a fuzzy inference system (FIS). For this example, read the FIS from the tipper.fis file.

fis = readfis('tipper');

Display the fuzzy system.

plotfis(fis)
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Display Tree of Fuzzy Inference Systems

Create a fistree object from a pair of fuzzy inference systems.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con1 = ["fis1/output1" "fis2/input1"];
con2 = ["fis1/input1" "fis1/input2"];
tree = fistree([fis1 fis2],[con1; con2]);

Display the tree of fuzzy inference systems.

plotfis(tree)

FIS Names:
    fis1
    fis2

Connections:
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    From            To
    ------------    -----------
    fis1/output1    fis2/input1
    fis1/input1     fis1/input2

Inputs:
    fis1/input1
    fis2/input2

Outputs:
    fis2/output1

For a fistree object, this function shows a description of the system in the Command Window
instead of a figure.

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system
• fistree object — Tree of interconnected fuzzy inference systems

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
evalmf | fistree | mamfis | mamfistype2 | plotmf | readfis | sugfis | sugfistype2

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31
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Introduced before R2006a
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plotmf
Plot membership functions for input or output variable

Syntax
plotmf(fis,variableType,variableIndex)
plotmf( ___ ,numPoints)

[xOut,mfOut] = plotmf( ___ )

[xOut,umfOut,lmfOut] = plotmf( ___ )

Description
plotmf(fis,variableType,variableIndex) plots the membership functions for an input or
output variable in the fuzzy inference system fis.

plotmf( ___ ,numPoints) specifies the number of data points to plot for each membership
function.

[xOut,mfOut] = plotmf( ___ ) returns the universe of discourse (xOut) and membership
function (mfOut) values without plotting them. Use this syntax when fis is a type-1 fuzzy inference
system.

[xOut,umfOut,lmfOut] = plotmf( ___ ) returns the universe of discourse (xOut), upper
membership function (umfOut), and lower membership function (lmfOut) values without plotting
them. Use this syntax when fis is a type-2 fuzzy inference system.

Examples

Plot Membership Functions for Input Variable

Create a fuzzy inference system.

fis = readfis('tipper');

Plot the membership functions for the first input variable.

plotmf(fis,'input',1)

8 Functions

8-176



Specify Number of Points for Membership Function Plot

Create a fuzzy inference system.

fis = readfis('tipper');

Plot the membership functions for the first output variable using 101 data points for each
membership function.

plotmf(fis,'output',1,101)
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Obtain Membership Function Plot Data

Create a fuzzy inference system.

fis = readfis('tipper');

Obtain the x-axis and y-axis data for the membership functions of the second input variable.

[xOut,yOut] = plotmf(fis,'input',2);

You can then, for example, plot a single membership function using this data.

plot(xOut(:,2),yOut(:,2))
xlabel('food')
ylabel('delicious membership')
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Plot Membership Functions for Type-2 FIS

Create a type-2 fuzzy inference system.

fis = mamfistype2('NumInputs',3,'NumOutputs',1);

Plot the membership functions for the second input variable.

plotmf(fis,'input',1)
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The type-2 membership functions have a footprint of uncertainty (FOU) between their upper and
lower membership functions.

You can also obtain the plotting data without generating a plot.

[xOut,umfOut,lmfOut] = plotmf(fis,'input',1);

You can then plot individual membership functions or plot the data using your own custom
formatting. For example, plot the upper and lower membership functions for only the second
membership function of the first input variable.

plot(xOut(:,2),umfOut(:,2),'r',xOut(:,2),lmfOut(:,2),'b')
xlabel('input1')
ylabel('delicious membership')
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Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

plotmf does not support plotting output membership functions of Sugeno systems.

variableType — Variable type
'input' | 'output'

Variable type, specified as one of the following:

• 'input' — Input variable
• 'output' — Output variable

variableIndex — Variable index
positive integer
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Variable index, specified as a positive integer. If variableType is:

• 'input', then variableIndex must be less than or equal to the number of input variables in
fis

• 'output', then variableIndex must be less than or equal to the number of output variables in
fis

numPoints — Number of data points to plot
181 (default) | positive integer

Number of data points to plot, specified as a positive integer.

Output Arguments
xOut — Universe of discourse data
array

Universe of discourse data, returned as a numPoints-by-NMF array, where NMF is the number of
membership functions for the variable specified by variableType and variableIndex.

mfOut — Membership function data
array

Membership function data for a type-1 membership function, returned as a numPoints-by-NMF array,
where NMF is the number of membership functions for the variable specified by variableType and
variableIndex.

umfOut — Upper membership function data
array

Upper membership function data for a type-2 membership function, returned as a numPoints-by-NMF
array, where NMF is the number of membership functions for the variable specified by variableType
and variableIndex.

lmfOut — Lower membership function data
array

Lower membership function data for a type-2 membership function, returned as a numPoints-by-NMF
array, where NMF is the number of membership functions for the variable specified by variableType
and variableIndex.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.
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Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
Functions
evalmf | plotfis

Introduced before R2006a
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probor
Probabilistic OR

Syntax
y = probor(x)

Description
y = probor(x) returns the probabilistic OR (also known as the algebraic sum) of the columns in x.
Within the fuzzy inference process, the probor function is used as either a fuzzy operator when
evaluating rule antecedents or an aggregation operator when combining the output fuzzy sets from
all the rules.

Examples

Compute Probabilistic OR Between Two Membership Functions

Define the universe of discourse (input values) for the membership functions.

x = 0:0.1:10;

Define two Gaussian membership functions with different means and variances.

y1 = gaussmf(x,[0.5 4]);
y2 = gaussmf(x,[2 7]);

Compute the probabilistic OR between these membership functions.

y = probor([y1;y2]);

Plot the results.

plot(x,[y1;y2;y])
legend('y1','y2','y')
ylim([-0.05 1.05])
ylabel('Membership')
xlabel('Input Value')
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Input Arguments
x — Fuzzy input values
array | row vector

Fuzzy input values, specified as an array or a row vector.

Output Arguments
y — Probabilistic OR values
row vector

Probabilistic OR values, returned as a row vector with the same number of columns as x. Each
element of y contains the probabilistic OR value for the corresponding column in x.

If x has one row, then y = x.

If x = [A;B], where A and B are row vectors, then the ith element of y is the following algebraic
sum:

y(i) = A(i) + B(i) - A(i)*B(i);

If x has more than two rows, the probabilistic OR is calculated for the first two rows. Then, the
probabilistic OR is computed between the result and the next row. This process repeats for each
subsequent row.
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x = [A;B;C;D]
y(i) = A(i) + B(i) - A(i)*B(i);
y(i) = y(i) + C(i) - y(i)*C(i);
y(i) = y(i) + D(i) - y(i)*D(i);

See Also
Topics
“Fuzzy Inference Process” on page 1-21

Introduced before R2006a
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psigmf
Product of two sigmoidal membership functions

Syntax
y = psigmf(x,params)

Description
This function computes fuzzy membership values using the product of two sigmoidal membership
functions. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-189.

This membership function is related to the sigmf and dsigmf membership functions.

y = psigmf(x,params) returns fuzzy membership values computed using the product of two
sigmoidal membership functions. Each sigmoidal function is given by:

f x; a, c = 1
1 + e−a(x− c)

To specify the a and c parameters for each sigmoidal function, use params.

Membership values are computed for each input value in x.

Examples

Product of Two Sigmoidal Membership Functions

x = 0:0.1:10;
y = psigmf(x,[2 3 -5 8]);
plot(x,y)
xlabel('psigmf, P = [2 3 -5 8]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [a1 c1 a2 c2]. Here, a1 and c1 are the
parameters of the first sigmoidal function, and a2 and c2 are the parameters of the second sigmoidal
function.

For each sigmoidal function, to open the function to the left or right, specify a negative or positive
value for a, respectively. The magnitude of a defines the width of the transition area, and parameter c
defines the center of the transition area.

To define a unimodal membership function with a maximum value of 1, specify opposite signs for a1
and a2, and select c values far enough apart to allow for both transition areas to reach 1.
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Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the psigmf membership function.

mf = fismf("psigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of psigmf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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readfis
Load fuzzy inference system from file

Syntax
fis = readfis(fileName)
fis = readfis

Description
You can load a fuzzy inference system (FIS) from a .fis file using the readfis function. To save a
FIS to a file, use the writeFIS function.

Note Do not manually edit the contents of a .fis file. Doing so can produce unexpected results
when loading the file using readfis.

fis = readfis(fileName) reads a FIS from the file specified by fileName.

fis = readfis opens a dialog box for selecting and reading a .fis file.

Examples

Load Fuzzy Inference System from File

Load the fuzzy system stored in the file tipper.fis.

fis = readfis('tipper')

fis = 
  mamfis with properties:

                       Name: "tipper"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.
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Input Arguments
fileName — File name
string | character vector

File name, specified as a string or character vector either with or without the .fis extension. This
file must be in the current working directory or on the MATLAB path.

Output Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, returned as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
writeFIS

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced before R2006a
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removeInput
Remove input variable from fuzzy inference system

Syntax
fisOut = removeInput(fisIn,inputName)

Description
fisOut = removeInput(fisIn,inputName) removes the input variable with the name
inputName from fuzzy inference system fisIn and returns the resulting fuzzy system in fisOut.

Examples

Remove Input Variable from Fuzzy Inference System

Load fuzzy system.

fis = readfis("tipper");

View the input variables of fis.

fis.Inputs

ans = 
  1x2 fisvar array with properties:

    Name
    Range
    MembershipFunctions

  Details:
           Name        Range     MembershipFunctions
         _________    _______    ___________________

    1    "service"    0    10        {1x3 fismf}    
    2    "food"       0    10        {1x2 fismf}    

View the rules of fis.

fis.Rules

ans = 
  1x3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection
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  Details:
                                Description                        
         __________________________________________________________

    1    "service==poor | food==rancid => tip=cheap (1)"           
    2    "service==good => tip=average (1)"                        
    3    "service==excellent | food==delicious => tip=generous (1)"

Remove the service input variable.

fis = removeInput(fis,"service");

View the updated input variables.

fis.Inputs

ans = 
  fisvar with properties:

                   Name: "food"
                  Range: [0 10]
    MembershipFunctions: [1x2 fismf]

View the updated rules.

fis.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                      Description             
         _____________________________________

    1    "food==rancid => tip=cheap (1)"      
    2    "food==delicious => tip=generous (1)"

service has been removed from the variables and rules of fis.

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
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• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

inputName — Input variable name
string | character vector

Input variable name, specified as a string or character vector.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut has the same properties as fisIn except:

• The input variable with the specified name is removed.
• The specified input variable is removed from any fuzzy rules. If a rule has only the specified input

variable in its antecedent, then the entire rule is removed. If a rule has more than one input
variable in its antecedent, then the specified input variable is removed from the antecedent.

See Also
addInput | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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removeMF
Remove membership function from fuzzy variable

Syntax
fisOut = removeMF(fisIn,varName,mfName)
fisOut = removeMF(fisIn,varName,mfName,'VariableType',varType)

varOut = removeMF(varIn,varName,mfName)

Description
fisOut = removeMF(fisIn,varName,mfName) removes the membership function mfName from
the input or output variable varName in the fuzzy inference system fisIn and returns the resulting
fuzzy system in fisOut. To use this syntax, varName must be a unique variable name within fisIn.

fisOut = removeMF(fisIn,varName,mfName,'VariableType',varType) removes the
membership function from either an input or output variable as specified by varType. Use this
syntax when your FIS has an input variable with the same name as an output variable.

varOut = removeMF(varIn,varName,mfName) removes the membership function mfName from
the fuzzy variable varIn and returns the resulting fuzzy variable in varOut.

Examples

Remove Membership Function from Fuzzy Inference System

Create a Mamdani fuzzy inference system with two inputs and one output. By default, when you
specify the number of inputs and outputs, mamfis adds three membership functions to each variable.

fis = mamfis('NumInputs',3,'NumOutputs',1)

fis = 
  mamfis with properties:

                       Name: "fis"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x3 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x27 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Name the variables. For this example, give the second input variable and the output variable the
same name.

 removeMF

8-195



fis.Inputs(1).Name = "speed";
fis.Inputs(2).Name = "throttle";
fis.Inputs(3).Name = "distance";
fis.Outputs(1).Name = "throttle";

View the membership functions for the first input variable.

plotmf(fis,"input",1)

Remove the second membership function, mf2, from the first input variable.

fis = removeMF(fis,"speed","mf2");

View the membership functions again. The specified membership function has been removed.

plotmf(fis,"input",1)
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If your system has an input variable with the same name as an output variable, you must specify the
variable type when removing a membership function. For example, remove the mf3 membership
function from the output variable.

fis = removeMF(fis,"throttle","mf3",'VariableType',"output");

View the membership functions of the output variable.

plotmf(fis,"output",1)
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Remove Membership Function from Fuzzy Variable

Create a fuzzy variable with a specified range and add three membership functions

var = fisvar([0 10]);
var = addMF(var,"trimf",[0 2.5 5],"Name","small");
var = addMF(var,"trimf",[2.5 5 7.5],"Name","medium");
var = addMF(var,"trimf",[5 7.5 10],"Name","large");

View the membership functions.

var.MembershipFunctions

ans = 
  1x3 fismf array with properties:

    Type
    Parameters
    Name

  Details:
           Name       Type         Parameters    
         ________    _______    _________________

    1    "small"     "trimf"      0    2.5      5
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    2    "medium"    "trimf"    2.5      5    7.5
    3    "large"     "trimf"      5    7.5     10

Remove the medium membership function from the variable.

var = removeMF(var,"medium");

Verify that the membership was removed.

var.MembershipFunctions

ans = 
  1x2 fismf array with properties:

    Type
    Parameters
    Name

  Details:
          Name       Type        Parameters   
         _______    _______    _______________

    1    "small"    "trimf"    0    2.5      5
    2    "large"    "trimf"    5    7.5     10

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

varName — Variable name
string | character vector

Variable name, specified as a string or character vector. You can specify the name of either an input
or output variable in your FIS.

mfName — Membership function name
string | character vector

Membership function name, specified as a string or character vector.

varType — Variable type
string | character vector

Variable type, specified as one of the following:
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• "input" — Input variable
• "output" — Output variable

If your system has an input variable with the same name as an output variable, specify which variable
to remove the membership function from using varType.

varIn — Fuzzy variable
fisvar object

Fuzzy variable, specified as a fisvar object.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut has the same properties as fisIn except:

• The membership function with the specified name is removed from the specified variable.
• The specified membership function is removed from any fuzzy rules. If a rule has only the
specified membership function in its antecedent, then the entire rule is removed. If a rule has
more than one membership function in its antecedent, then the specified membership function is
removed from the antecedent.

varOut — Fuzzy variable
fisvar object

Fuzzy variable, returned as a fisvar object. varOut has the same properties as varIn except the
membership function with the specified name is removed.

See Also
addMF

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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removeOutput
Remove output variable from fuzzy inference system

Syntax
fisOut = removeOutput(fisIn,outputName)

Description
fisOut = removeOutput(fisIn,outputName) removes the output variable with the name
outputName from fuzzy inference system fisIn and returns the resulting fuzzy system in fisOut.

Examples

Remove Output Variable from Fuzzy Inference System

Load fuzzy system.

fis = readfis("mam22");

View the output variables of fis.

fis.Outputs

ans = 
  1x2 fisvar array with properties:

    Name
    Range
    MembershipFunctions

  Details:
           Name       Range      MembershipFunctions
         ________    ________    ___________________

    1    "force"     -5     5        {1x4 fismf}    
    2    "force2"    -5     5        {1x4 fismf}    

View the rules of fis.

fis.Rules

ans = 
  1x4 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection
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  Details:
                                      Description                              
         ______________________________________________________________________

    1    "angle==small & velocity==small => force=negBig, force2=posBig2 (1)"  
    2    "angle==small & velocity==big => force=negSmall, force2=posSmall2 (1)"
    3    "angle==big & velocity==small => force=posSmall, force2=negSmall2 (1)"
    4    "angle==big & velocity==big => force=posBig, force2=negBig2 (1)"      

Remove the forceBig output variable.

fis = removeOutput(fis,"force2");

View the updated output variables.

fis.Outputs

ans = 
  fisvar with properties:

                   Name: "force"
                  Range: [-5 5]
    MembershipFunctions: [1x4 fismf]

View the updated rules.

fis.Rules

ans = 
  1x4 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                             Description                     
         ____________________________________________________

    1    "angle==small & velocity==small => force=negBig (1)"
    2    "angle==small & velocity==big => force=negSmall (1)"
    3    "angle==big & velocity==small => force=posSmall (1)"
    4    "angle==big & velocity==big => force=posBig (1)"    

force2 has been removed from the variables and rules of fis.

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:
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• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

outputName — Output variable name
string | character vector

Output variable name, specified as a string or character vector.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut has the same properties as fisIn except:

• The input variable with the specified name is removed.
• The specified input variable is removed from any fuzzy rules. If a rule has only the specified input

variable in its antecedent, then the entire rule is removed. If a rule has more than one input
variable in its antecedent, then the specified input variable is removed from the antecedent.

See Also
addOutput | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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rmmf
(To be removed) Remove membership function from fuzzy inference system

Note rmmf will be removed in a future release. Use removeMF instead. For more information, see
“Compatibility Considerations”.

Syntax
fis = rmmf(fis,varType,varIndex,'mf',mfIndex) 

Description
fis = rmmf(fis,varType,varIndex,'mf',mfIndex) removes the membership function,
mfIndex, of variable type varType, of index varIndex, from the fuzzy inference system associated
with the workspace FIS structure, fis:

• Specify varType as either 'input' or 'output'.
• varIndex is an integer for the index of the variable. This index represents the order in which the

variables are listed.
• mfIndex is an integer for the index of the membership function. This index represents the order

in which the membership functions are listed.

Examples

Remove Membership Function From Variable

Create fuzzy inference system.

fis = newfis('mysys');

Add an input variable with a single membership function to the system.

fis = addvar(fis,'input','temperature',[0 100]);
fis = addmf(fis,'input',1,'cold','trimf',[0 30 60]);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 1
       mf1: 'cold'
     range: [0 100]

Remove the membership function. To do so, remove membership function 1 from input 1.

fis = rmmf(fis,'input',1,'mf',1);
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View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 0
     range: [0 100]

The variable now has no membership function.

Compatibility Considerations
rmmf will be removed
Not recommended starting in R2018b

rmmf will be removed in a future release. Use removeMF instead. There are differences between
these functions that require updates to your code.

Update Code

The following table shows some typical usages of rmmf and how to update your code to use
removeMF instead. Previously, you specified the index of the variable from which you wanted to
remove the membership function and the index of the membership function that you wanted to
remove. Now, to remove a membership function, specify the variable name and the membership
function name.

If your code has this form: Use this code instead:
fis = rmmf(fis,'input',1,'mf',1) fis = removeMF(fis,"service","poor")
fis = rmmf(fis,'output',1,'mf',1) fis = removeMF(fis,"tip","cheap")

See Also
addMF | addRule | addvar | plotmf | removeMF | rmvar

Topics
“Membership Functions” on page 1-11
“The Membership Function Editor” on page 2-20

Introduced before R2006a

 rmmf

8-205



rmvar
(To be removed) Remove variables from fuzzy inference system

Note rmvar will be removed in a future release. Use removeInput or removeOutput instead. For
more information, see “Compatibility Considerations”.

Syntax
fis = rmvar(fis,varType,varIndex)
[fis,errorStr] = rmvar(fis,varType,varIndex)

Description
fis = rmvar(fis,varType,varIndex) removes the variable varType, of index varIndex, from
the fuzzy inference system associated with the workspace FIS structure, fis:

• SpecifyvarType as either 'input' or 'output'.
• varIndex is an integer for the index of the variable. This index represents the order in which the

variables are listed.

[fis,errorStr] = rmvar(fis,varType,varIndex) returns any error messages to the
character vector, errorStr.

This command automatically alters the rule list to keep its size consistent with the current number of
variables. You must delete from the FIS any rule that contains a variable you want to remove, before
removing it. You cannot remove a fuzzy variable currently in use in the rule list.

Examples

Remove Membership Function From Variable

Create fuzzy inference system.

fis = newfis('mysys');

Add an input variable with a single membership function to the system.

fis = addvar(fis,'input','temperature',[0 100]);
fis = addmf(fis,'input',1,'cold','trimf',[0 30 60]);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 1
       mf1: 'cold'

8 Functions

8-206



     range: [0 100]

Remove the membership function. To do so, remove membership function 1 from input 1.

fis = rmmf(fis,'input',1,'mf',1);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 0
     range: [0 100]

The variable now has no membership function.

Compatibility Considerations
rmvar will be removed
Not recommended starting in R2018b

rmvar will be removed in a future release. Use removeInput or removeOutput instead. There are
differences between these functions that require updates to your code.

To remove input or output variables from a fuzzy system, use removeInput or removeOutput,
respectively.

Update Code

This table shows some typical usages of rmvar and how to update your code to use removeInput or
removeOutput instead. Previously, you specified the index of the variable that you wanted to
remove. Now, to remove a variable, specify the variable name.

If your code has this form: Use this code instead:
fis = rmvar(fis,'input',1) fis = removeInput(fis,"service")
fis = rmvar(fis,'output',1) fis = removeOutput(fis,"tip")

Previously, you had to delete any rules from your fuzzy system that contained the variable you wanted
to remove. removeInput and removeOutput automatically remove these variables from the rule set
of your fuzzy system.

See Also
addMF | addRule | addvar | removeInput | removeOutput | rmmf

Introduced before R2006a
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ruleedit
Open Rule Editor

Syntax
ruleedit(fis)
ruleedit(fileName)

Description
Use the Rule Editor to view or modify the rules of your fuzzy system. To define rules, you must specify
the input and output variables of your FIS and their corresponding membership functions.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Rule Editor. For more information on interactively creating
fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14.

ruleedit(fis) opens the Rule Editor and loads the fuzzy inference system fis.

ruleedit(fileName) opens the Rule Editor and loads a fuzzy inference system from the file
specified by fileName.

Examples

Open Rule Editor

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Rule Editor for this fuzzy system.

ruleedit(fis)
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Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as either a mamfis or sugfis object in the MATLAB workspace.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b
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Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
Apps
Fuzzy Logic Designer

Functions
addRule | mfedit | ruleview | showrule | surfview

Topics
“The Rule Editor” on page 2-25

Introduced before R2006a
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ruleview
Open Rule Viewer

Syntax
ruleview(fis)
ruleview(fileName)

Description
Use the Rule Viewer to view the inference process for your fuzzy system. You can adjust the input
values and view the corresponding output of each fuzzy rule, the aggregated output fuzzy set, and the
defuzzified output value. To view the inference process, you must specify the input and output
variables of your FIS, their corresponding membership functions, and the fuzzy rules for your system.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Rule Viewer. For more information on interactively creating
fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14.

ruleview(fis) opens the Rule Viewer and loads the fuzzy inference system fis.

ruleview(fileName) opens the Rule Viewer and loads a fuzzy inference system from the file
specified by fileName.

Examples

Open Rule Viewer

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Rule Viewer for this fuzzy system.

ruleview(fis)
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Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as either a mamfis or sugfis object in the MATLAB workspace.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b
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Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
Apps
Fuzzy Logic Designer

Functions
addRule | mfedit | ruleedit | showrule | surfview

Topics
“The Rule Viewer” on page 2-27

Introduced before R2006a
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setfis
(To be removed) Set fuzzy system properties

Note setfis will be removed in a future release. Set fuzzy inference system properties using dot
notation instead. For more information, see “Compatibility Considerations”.

Syntax
fis = setfis(fis,fisPropName,fisPropVal)

fis = setfis(fis,varType,varIndex,varPropName,varPropVal)

fis = setfis(fis,varType,varIndex,'mf',mfIndex,mfPropName,mfPropVal)

Description
The command setfis can be called with three, five, or seven input arguments, depending on
whether you want to set a property of the entire FIS structure, for a particular variable belonging to
that FIS structure, or for a particular membership function belonging to one of those variables. The
arguments are:

• fis — FIS structure in the MATLAB workspace.
• varType — Variable type, specified as either 'input' or 'output'.
• varIndex — Variable index, specified as a positive integer.
• mfIndex — Membership function index, specified as a positive integer.
• fisPropName — FIS property you want to set, specified as one of the following:

• 'name'
• 'type'
• 'andmethod'
• 'ormethod'
• 'impmethod'
• 'aggmethod'
• 'defuzzmethod'

• fisPropVal — New value of the FIS property you want to set, specified as a character vector or
string.

• varPropName — Variable property you want to set, specified as either 'name' or 'range'.
• varPropVal — New value of the variable property you want to set, specified as a character

vector or string (for 'name'), or a two-element row vector (for 'range').
• mfPropName — Membership function property you want to set, specified as either 'name',

'type', or 'params'.
• mfPropVal — New value of the membership function property you want to set, specified as a

character vector or string (for 'name' or 'type'), or a numerical row vector (for 'params').
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Examples

Set Fuzzy Inference System Properties

Load a fuzzy inference system.

fis = readfis('tipper');

Set the defuzzification method to the bisector method.

fis = setfis(fis,'defuzzmethod','bisector');

View the defuzzification method of the updated FIS.

getfis(fis,'defuzzmethod')

ans = 
'bisector'

Set Variable Properties in FIS

Load fuzzy inference system.

fis = readfis('tipper');

Set the name of the first input variable to 'help'.

fis = setfis(fis,'input',1,'name','help');

View the name of the variable in the updated system.

getfis(fis,'input',1,'name')

ans = 
'help'

Set Membership Function Properties in FIS

Load a fuzzy inference system.

fis = readfis('tipper');

Change the type of the second membership function of the first input variable to a triangular
membership function.

fis = setfis(fis,'input',1,'mf',2,'type','trimf');

When changing the type of a membership function, you must also set the parameters accordingly. To
convert the original Gaussian membership function parameters to triangular membership function
parameters, use the mf2mf command.

gaussParams = getfis(fis,'input',1,'mf',2,'params');
triParams = mf2mf(gaussParams,'gaussmf','trimf');
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Set the membership function parameters to the converted values.

fis = setfis(fis,'input',1,'mf',2,'params',triParams);

View the updated membership function properties.

getfis(fis,'input',1,'mf',2)

ans = struct with fields:
      Name: 'good'
      Type: 'trimf'
    params: [1.4680 5 8.5320]

Compatibility Considerations
setfis will be removed
Not recommended starting in R2018b

setfis will be removed in a future release. Set fuzzy inference system properties using dot notation
instead. There are differences between these approaches that require updates to your code.

Update Code

This table shows some typical usages of setfis for setting fuzzy inference system properties and
how to update your code to use dot notation instead.

If your code has this form: Use this code instead:
fis = setfis(fis,'andmethod','prod') fis.AndMethod = 'prod'
fis = setfis(fis,'input',1,...
             'name','service')

fis.Inputs(1).Name = "service"

fis = setfis(fis,'input',2,...
             'mf',1,...
             params,[5 10 15])

fis.Inputs(2).MembershipFunctions(1).Parameters = ...
     [5 10 15]

Previously, fuzzy inference systems were represented as structures. Now, fuzzy inference systems are
represented as objects. Fuzzy inference system object properties have different names than the
corresponding structure fields. For more information on fuzzy inference system objects, see mamfis
and sugfis.

See Also
getfis

Introduced before R2006a
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setTunable
Package: fuzzy.tuning

Set specified parameter settings as tunable or nontunable

Syntax
paramsOut = setTunable(paramsIn,tunableFlag)

Description
paramsOut = setTunable(paramsIn,tunableFlag) sets the paramsIn parameters as tunable
or nontunable using tunableFlag. The modified tunable parameter settings are returned in
paramsOut.

Examples

Specify Tunability of Parameter Settings

Create a fuzzy inference system, and define the tunable parameter settings of inputs, outputs, and
rules.

Create a FIS, and obtain its tunable settings.

fis = mamfis("NumInputs",2,"NumOutputs",2);
[in,out,rule] = getTunableSettings(fis);

You can specify all the input variables, output variables, or rules as tunable or nontunable. For
example, set all the output variable settings as nontunable.

out = setTunable(out,0);

You can set the tunability of individual variables or rules. For example, set the first input variable as
nontunable.

in(1) = setTunable(in(1),0);

You can set individual membership functions as nontunable. For example, set the first membership
function of input 2 as nontunable.

in(2).MembershipFunctions(1) = setTunable(in(2).MembershipFunctions(1),0);

You can also specify the tunability of a subset of variables or rules. For example, set the first two rules
as nontunable.

rule(1:2) = setTunable(rule(1:2),0);
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Input Arguments
paramsIn — Tunable parameter settings
array | VariableSettings object | RuleSettings object | MembershipFunctionSettings
object | MembershipFunctionSettingsType2 object

Tunable parameter settings, specified as one of the following:

• VariableSettings object or an array of such objects
• RuleSettingsObject object or an array of such objects
• MembershipFunctionSettings object or an array of such objects
• MembershipFunctionSettingsType2 object or an array of such objects

array of input, output, and rule parameter settings of a fuzzy system. To obtain these parameter
settings, use getTunableSettings with the input FIS. paramsetIn can be the input parameter, the
output parameter, the rule parameter, or some combination of these parameters as an array. The
contents of the array depend on which parameters you would like to set.

tunableFlag — Parameter tunability
true or 1 | false or 0

Parameter tunability for the parameters specified in paramsIn, specified as a logical 1 (tunable) or 0
(nontunable).

Output Arguments
paramsOut — Modified tunable parameter settings
VariableSettings object | RuleSettings object | MembershipFunctionSettings object |
MembershipFunctionSettingsType2 object | vector

Modified unable parameter settings, returned as one of the following:

• VariableSettings object or an array of such objects
• RuleSettingsObject object or an array of such objects
• MembershipFunctionSettings object or an array of such objects
• MembershipFunctionSettingsType2 object or an array of such objects

paramsOut is the same as paramsetIn, except with all tunable parameters set to the value specified
in tunableFlag.

See Also
getTunableSettings | mamfis | sugfis | tunefis

Introduced in R2019a
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setTunableValues
Specify tunable parameter values of a fuzzy inference system

Syntax
fisOut = setTunableValues(fisIn,paramset,paramvals)
___  = setTunableValues( ___ ,'IgnoreInvalidParameters',ignoreInvalid)

Description
fisOut = setTunableValues(fisIn,paramset,paramvals) sets the tunable parameter values
of fuzzy inference system fisIn and returns the resulting fuzzy system in fisOut. To specify the
parameters to set, use paramset. Specify the new parameter values using paramvals.

___  = setTunableValues( ___ ,'IgnoreInvalidParameters',ignoreInvalid) sets a flag
for ignoring invalid parameters values.

Examples

Specify Tunable Parameter Values of a FIS

Create a fuzzy inference system and define the tunable parameter settings of inputs, outputs, and
rules.

fis = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
[in,out,rule] = getTunableSettings(fis);

Obtain tunable parameter values of the inputs, outputs, and rules of the fuzzy inference system.

paramVals = getTunableValues(fis,[in;out;rule]);

Redefine some of the values and update the tunable parameter values of the FIS.

paramVals(1:3) = [0 0 1];
fis = setTunableValues(fis,[in;out;rule],paramVals);

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as a mamfis, sugfis, mamfistype2, sugfistype2, or fistree
object.

paramset — Tunable parameter settings
array
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Tunable parameter settings, specified as an array of input, output, and rule parameter settings in the
input FIS. To obtain these parameter settings, use the getTunableSettings function with the input
fis.

paramset can be the input, output, or rule parameter settings, or any combination of these settings.

paramvals — Tunable parameter values
array

Tunable parameter values, specified as an array. The order of the values in paramvals matches the
order of the parameters in paramset. To obtain the array of parameter values for a FIS, use
getTunableValues.

ignoreInvalid — Flag to ignore invalid parameters
array

Flag to ignore invalid parameters, specified as either true or false. If true, invalid paramvals are
replaced with the existing parameter values of a fuzzy system.

Output Arguments
fisOut — Modified fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Modified fuzzy inference system, returned as a mamfis, sugfis, mamfistype2, or sugfistype2, or
fistree object.

fisOut is the same as fisIn except that the parameters specified by paramset have the values
specified by paramvals.

See Also
getTunableSettings | getTunableValues | mamfis | mamfistype2 | sugfis | sugfistype2 |
tunefis

Introduced in R2019a
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showfis
(To be removed) Display annotated Fuzzy Inference System

Note showfis will be removed in a future release. View the properties of your FIS directly instead.
For more information, see “Compatibility Considerations”.

Syntax
showfis(fismat) 

Description
showfis(fismat) prints a version of the MATLAB workspace variable FIS, fismat, allowing you to
see the significance and contents of each field of the structure.

Examples
a = readfis('tipper');
showfis(a)

Returns:

1.  Name             tipper
2.  Type             mamdani
3.  Inputs/Outputs   [2 1]
4.  NumInputMFs      [3 2]
5.  NumOutputMFs     3
6.  NumRules         3
7.  AndMethod        min
8.  OrMethod         max
9.  ImpMethod        min
10. AggMethod        max
11. DefuzzMethod     centroid
12. InLabels         service
13.                  food   
14. OutLabels        tip
15. InRange          [0 10]
16.                  [0 10]
17. OutRange         [0 30]
18. InMFLabels       poor     
19.                  good     
20.                  excellent
21.                  rancid   
22.                  delicious
23. OutMFLabels      cheap   
24.                  average 
25.                  generous
26. InMFTypes        gaussmf
27.                  gaussmf
28.                  gaussmf
29.                  trapmf 
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30.                  trapmf 
31. OutMFTypes       trimf
32.                  trimf
33.                  trimf
34. InMFParams       [1.5 0 0 0] 
35.                  [1.5 5 0 0] 
36.                  [1.5 10 0 0]
37.                  [0 0 1 3]   
38.                  [7 9 10 10] 
39. OutMFParams      [0 5 10 0]  
40.                  [10 15 20 0]
41.                  [20 25 30 0]
42. Rule Antecedent  [1 1]
43.                  [2 0]
44.                  [3 2]
42. Rule Consequent  1
43.                  2
44.                  3
42. Rule Weight      1
43.                  1
44.                  1
42. Rule Connection  2
43.                  1
44.                  2

Compatibility Considerations
showfis will be removed
Not recommended starting in R2018b

showfis will be removed in a future release. View the properties of your FIS directly instead.

Previously, you could view the properties of your fuzzy system, myFIS, using the showfis function.

showfis(myFIS)

Now, you can view the properties directly instead.

myFIS

To view additional FIS properties, use dot notation. For example, view information about the
membership functions of the first input variable.

myFIS.Inputs(1).MembershipFunctions

For more information on fuzzy inference systems and their properties, see mamfis and sugfis.

See Also
getfis

Introduced before R2006a
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showrule
Display fuzzy inference system rules

Syntax
showrule(fis)
showrule(fis,Name,Value)

Description
showrule(fis) displays the rules in the fuzzy inference system fis.

showrule(fis,Name,Value) displays rules using options specified by one or more Name,Value
pair arguments.

Examples

Display All Rules for a Fuzzy Inference System

Load fuzzy inference system.

fis = readfis('tipper');

Display rules using linguistic expressions.

showrule(fis)

ans = 3x78 char array
    '1. If (service is poor) or (food is rancid) then (tip is cheap) (1)           '
    '2. If (service is good) then (tip is average) (1)                             '
    '3. If (service is excellent) or (food is delicious) then (tip is generous) (1)'

Display rules using symbolic expressions.

showrule(fis,'Format','symbolic')

ans = 3x65 char array
    '1. (service==poor) | (food==rancid) => (tip=cheap) (1)           '
    '2. (service==good) => (tip=average) (1)                          '
    '3. (service==excellent) | (food==delicious) => (tip=generous) (1)'

Display rules using membership function indices.

showrule(fis,'Format','indexed')

ans = 3x15 char array
    '1 1, 1 (1) : 2 '
    '2 0, 2 (1) : 1 '
    '3 2, 3 (1) : 2 '
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Select Fuzzy Rules to Display

Load fuzzy inference system.

fis = readfis('tipper');

Display the first and third rules.

showrule(fis,'RuleIndex',[1 3])

ans = 2x78 char array
    '1. If (service is poor) or (food is rancid) then (tip is cheap) (1)           '
    '3. If (service is excellent) or (food is delicious) then (tip is generous) (1)'

Display Fuzzy Rules in German Language

Load fuzzy inference system.

fis = readfis('tipper');

Display the rules in German using the 'deutsch' language.

showrule(fis,'Language','deutsch')

ans = 3x85 char array
    '1. Wenn (service ist poor) oder (food ist rancid) dann (tip ist cheap) (1)           '
    '2. Wenn (service ist good) dann (tip ist average) (1)                                '
    '3. Wenn (service ist excellent) oder (food ist delicious) dann (tip ist generous) (1)'

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'Format','symbolic' sets the rule display format to use language-neutral symbolic
expressions.

RuleIndex — Rules to display
positive integer | vector of positive integers

Rules to display, specified as the comma-separated pair consisting of 'RuleIndex' and one of the
following:

• Positive integer — Index of a single rule to display
• Vector of positive integers — Indices of multiple rules to display

The default vector includes the indices for all the rules in fis.

Format — Rule format
'verbose' (default) | 'symbolic' | 'indexed'

Rule format, specified as the comma-separated pair consisting of 'Format' and one of the following:

• 'verbose' — Use linguistic expressions.

'If (service is poor) or (food is rancid) then (tip is cheap) (1)'

The rule weight is displayed in parentheses at the end of the rule.

You can specify the rule language using the Language option.
• 'symbolic' — Use language-neutral symbolic expressions.

'(service==poor) | (food==rancid) => (tip=cheap) (1)'

The symbolic rules use the following symbols.

Rule Component Symbol
AND &
OR |
IS (in antecedent) ==
IS (in consequent) =
IS NOT ~=
Implication (then) =>

The rule weight is displayed in parentheses at the end of the rule.
• 'indexed' — Use input and output membership function (MF) indices and integer representation

of fuzzy operators.

The indexed rules display in the following format:
'<input MFs>, <output MFs>, (<weight>) : <logical operator - 1 (AND), 2 (OR)>'

For example:

'1 1, 1 (1) : 2'
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To indicate NOT operations for input and output membership functions, the software uses
negative indices. For example, to indicate "not the second membership function," the software
uses -2.

To indicate a don’t care condition for an input or output membership function, the software uses
0.

Language — Rule language
'english' (default) | 'francais' | 'deutsch'

Rule language for 'verbose' format, specified as the comma-separated pair consisting of
'Language' and one of the following:

• 'english' — Display rules in English.

'If (service is poor) or (food is rancid) then (tip is cheap) (1)'

• 'francais' — Display rules in French.

'Si (service est poor) ou (food est rancid) alors (tip est cheap) (1)'

• 'deutsch' — Display rules in German.
'Wenn (service ist poor) oder (food ist rancid) dann (tip ist cheap) (1)'

The software displays the FIS rules using the following keywords.

Rule Component English French German
Start of antecedent if si wenn
AND and et und
OR or ou oder
Start of consequent
(implication)

then alors dann

IS is est ist
IS NOT is not n''est_pas ist nicht

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.
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See Also
addRule | ruleedit

Introduced before R2006a
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sigmf
Sigmoidal membership function

Syntax
y = sigmf(x,params)

Description
This function computes fuzzy membership values using the difference between two sigmoidal
membership functions. You can also compute this membership function using a fismf object. For
more information, see “fismf Object” on page 8-230.

This membership function is related to the dsigmf and psigmf membership functions.

y = sigmf(x,params) returns fuzzy membership values computed using the sigmoidal
membership function given by:

f x; a, c = 1
1 + e−a(x− c)

To specify the a and c parameters, use params.

Membership values are computed for each input value in x.

Examples

Sigmoidal Membership Function

x = 0:0.1:10;
y = sigmf(x,[2 4]);
plot(x,y)
xlabel('sigmf, P = [2 4]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [a c]. To open the membership function to
the left or right, specify a negative or positive value for a, respectively. The magnitude of a controls
the width of the transition area, and c defines the center of the transition area.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.
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Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the sigmf membership function.

mf = fismf("sigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of sigmf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | smf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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smf
S-shaped membership function

Syntax
y = smf(x,params)

Description
This function computes fuzzy membership values using a spline-based S-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-233.

This membership function is related to the zmf and pimf membership functions.

y = smf(x,params) returns fuzzy membership values computed using the spline-based S-shaped
membership function given by:

f (x; a, b) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, x ≥ b

To specify the a and b parameters, use params.

Membership values are computed for each input value in x.

Examples

S-Shaped Membership Function

x = 0:0.1:10;
y = smf(x,[1 8]);
plot(x,y)
xlabel('smf, P = [1 8]')
ylim([-0.05 1.05])

 smf

8-231



Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the foot of the
membership function, and b defines its shoulder.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.
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Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the smf membership function.

mf = fismf("smf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of smf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | trapmf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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subclust
Find cluster centers using subtractive clustering

Syntax
centers = subclust(data,clusterInfluenceRange)
centers = subclust(data,clusterInfluenceRange,Name,Value)
[centers,sigma] = subclust( ___ )

Description
centers = subclust(data,clusterInfluenceRange) clusters input data using subtractive
clustering with the specified cluster influence range, and returns the computed cluster centers. The
subtractive clustering algorithm on page 8-238 estimates the number of clusters in the input data.

centers = subclust(data,clusterInfluenceRange,Name,Value) clusters data using
algorithm options specified by one or more Name,Value pair arguments.

[centers,sigma] = subclust( ___ ) returns the sigma values specifying the range of influence
of a cluster center in each of the data dimensions.

Examples

Find Cluster Centers Using Subtractive Clustering

Load data set.

load clusterdemo.dat

Find cluster centers using the same range of influence for all dimensions.

C = subclust(clusterdemo,0.6);

Each row of C contains one cluster center.

C

C = 3×3

    0.5779    0.2355    0.5133
    0.7797    0.8191    0.1801
    0.1959    0.6228    0.8363

Specify Bounds for Subtractive Clustering

Load data set.

load clusterdemo.dat
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Define minimum and maximum normalization bounds for each data dimension. Use the same bounds
for each dimension.

dataScale = [-0.2 -0.2 -0.2;
              1.2  1.2  1.2];

Find cluster centers.

C = subclust(clusterdemo,0.5,'DataScale',dataScale);

Specify Options for Subtractive Clustering

Load data set.

load clusterdemo.dat

Specify the following clustering options:

• Squash factor of 2.0 - Only find clusters that are far from each other.
• Accept ratio 0.8 - Only accept data points with a strong potential for being cluster centers.
• Reject ratio of 0.7 - Reject data points if they do not have a strong potential for being cluster

centers.
• Verbosity flag of 0 - Do not print progress information to the command window.

options = [2.0 0.8 0.7 0];

Find cluster centers, using a different range of influence for each dimension and the specified
options.

C = subclust(clusterdemo,[0.5 0.25 0.3],'Options',options);

Obtain Cluster Influence Range for Each Data Dimension

Load data set.

load clusterdemo.dat

Cluster data, returning cluster sigma values, S.

[C,S] = subclust(clusterdemo,0.5);

Cluster sigma values indicate the range of influence of the computed cluster centers in each data
dimension.

Input Arguments
data — Data set to be clustered
M-by-N array
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Data to be clustered, specified as an M-by-N array, where M is the number of data points and N is the
number of data dimensions.

clusterInfluenceRange — Range of influence of the cluster center
scalar value in the range [0, 1] | vector

Range of influence of the cluster center for each input and output assuming the data falls within a
unit hyperbox, specified as the comma-separated pair consisting of 'ClusterInfluenceRange' one
of the following:

• Scalar value in the range [0 1] — Use the same influence range for all inputs and outputs.
• Vector — Use different influence ranges for each input and output.

Specifying a smaller range of influence usually creates more and smaller data clusters, producing
more fuzzy rules.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DataScale','auto'sets the normalizing factors for the input and output signals using
the minimum and maximum values in the data set to be clustered.

DataScale — Data scale factors
'auto' (default) | 2-by-N array

Data scale factors for normalizing input and output data into a unit hyperbox, specified as the
comma-separated pair consisting of 'DataScale' and a 2-by-N array, where N is the total number of
inputs and outputs. Each column of DataScale specifies the minimum value in the first row and the
maximum value in the second row for the corresponding input or output data set.

When DataScale is 'auto', the genfis command uses the actual minimum and maximum values in
the data to be clustered.

Options — Clustering options
vector

Clustering options, specified as the comma-separated pair consisting of 'Options' and a vector with
the following elements:

Options(1) — Squash factor
1.25 (default) | positive scalar

Squash factor for scaling the range of influence of cluster centers, specified as a positive scalar. A
smaller squash factor reduces the potential for outlying points to be considered as part of a cluster,
which usually creates more and smaller data clusters.

Options(2) — Acceptance ratio
0.5 (default) | scalar value in the range [0, 1]

Acceptance ratio, defined as a fraction of the potential of the first cluster center, above which another
data point is accepted as a cluster center, specified as a scalar value in the range [0, 1]. The
acceptance ratio must be greater than the rejection ratio.
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Options(3) — Rejection ratio
0.15 (default) | scalar value in the range [0, 1]

Rejection ratio, defined as a fraction of the potential of the first cluster center, below which another
data point is rejected as a cluster center, specified as a scalar value in the range [0, 1]. The rejection
ratio must be less than acceptance ratio.

Options(4) — Information display flag
false (default) | true

Information display flag indicating whether to display progress information during clustering,
specified as one of the following:

• false — Do not display progress information.
• true — Display progress information.

Output Arguments
centers — Cluster centers
J-by-N array

Cluster centers, returned as a J-by-N array, where J is the number of clusters and N is the number of
data dimensions.

sigma — Range of influence of cluster centers
N-element row vector

Range of influence of cluster centers for each data dimension, returned as an N-element row vector.
All cluster centers have the same set of sigma values.

Tips
• To generate a fuzzy inference system using subtractive clustering, use the genfis command. For

example, suppose you cluster your data using the following syntax:
C = subclust(data,clusterInfluenceRange,'DataScale',dataScale,'Options',options);

where the first M columns of data correspond to input variables, and the remaining columns
correspond to output variables.

You can generate a fuzzy system using the same training data and subtractive clustering
configuration. To do so:

1 Configure clustering options.

opt = genfisOptions('SubtractiveClustering');
opt.ClusterInfluenceRange = clusterInfluenceRange;
opt.DataScale = dataScale;
opt.SquashFactor = options(1);
opt.AcceptRatio = options(2);
opt.RejectRatio = options(3);
opt.Verbose = options(4);

2 Extract input and output variable data.
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inputData = data(:,1:M);
outputData = data(:,M+1:end);

3 Generate FIS structure.

fis = genfis(inputData,outputData,opt);

The fuzzy system, fis, contains one fuzzy rule for each cluster, and each input and output
variable has one membership function per cluster. You can generate only Sugeno fuzzy systems
using subtractive clustering. For more information, see genfis and genfisOptions.

Algorithms
Subtractive clustering assumes that each data point is a potential cluster center. The algorithm does
the following:

1 Calculate the likelihood that each data point would define a cluster center, based on the density
of surrounding data points.

2 Choose the data point with the highest potential to be the first cluster center.
3 Remove all data points near the first cluster center. The vicinity is determined using

clusterInfluenceRange.
4 Choose the remaining point with the highest potential as the next cluster center.
5 Repeat steps 3 and 4 until all the data is within the influence range of a cluster center.

The subtractive clustering method is an extension of the mountain clustering method proposed in [2].

References
[1] Chiu, S., "Fuzzy Model Identification Based on Cluster Estimation," Journal of Intelligent & Fuzzy

Systems, Vol. 2, No. 3, Sept. 1994.

[2] Yager, R. and D. Filev, "Generation of Fuzzy Rules by Mountain Clustering," Journal of Intelligent
& Fuzzy Systems, Vol. 2, No. 3, pp. 209-219, 1994.

See Also
genfis

Topics
“Fuzzy Clustering” on page 4-2
“Model Suburban Commuting Using Subtractive Clustering” on page 4-17

Introduced before R2006a
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surfview
Open Surface Viewer

Syntax
ruleview(fis)
ruleview(fileName)

Description
Use the Surface Viewer to view the output surface for your fuzzy system. To view the output surface,
you must specify the input and output variables of your FIS, their corresponding membership
functions, and the fuzzy rules for your system.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Surface Viewer. For more information on interactively creating
fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14.

ruleview(fis) opens the Surface Viewer and loads the fuzzy inference system fis.

ruleview(fileName) opens the Surface Viewer and loads a fuzzy inference system from the file
specified by fileName.

Examples

Open Surface Viewer

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Surface Viewer for this fuzzy system.

surfview(fis)
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Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Note The Surface Viewer is the only interface of the Fuzzy Logic Designer app that supports type-2
fuzzy inference systems.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.
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Tips
• For systems with more than two input variables, you can view the output surface for any

combination of two inputs. You must specify constant reference values for any other input signals
using the Ref. Input value.

• By default, the surface plot updates automatically when you change the input or output variable
selections or the number of grid points. To disable automatic plot updates, in the Options menu,
clear the Always evaluate option. When this option is disabled, to update the plot, click
Evaluate.

• To create a smoother plot, increase the Plot points value.
• To view the surface from different angles, click and drag on the plot area.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
Apps
Fuzzy Logic Designer

Functions
gensurf | mfedit | ruleedit | ruleview

Topics
“The Surface Viewer” on page 2-29

Introduced before R2006a
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trapmf
Trapezoidal membership function

Syntax
y = trapmf(x,params)

Description
This function computes fuzzy membership values using a trapezoidal membership function. You can
also compute this membership function using a fismf object. For more information, see “fismf
Object” on page 8-244.

This membership function is related to the trimf membership function.

y = trapmf(x,params) returns fuzzy membership values computed using the following trapezoidal
membership function:

f x; a, b, c, d = max min x− a
b− a , 1, d− x

d− c , o

To specify the parameters, a, b, c, and d, use params.

Membership values are computed for each input value in x.

Examples

Trapezoid-Shaped Membership Function

x = 0:0.1:10;
y = trapmf(x,[1 5 7 8]);
plot(x,y)
xlabel('trapmf, P = [1 5 7 8]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c d]. Parameters b and c define the
shoulders of the membership function, and a and d define its feet.

The shape of the membership function depends on the relative values of b and c:

• When c is greater than b, the resulting membership function is trapezoidal.
• When b is equal to c, the resulting membership function is equivalent to a triangular membership

function with parameters [a b d].
• When c is less to b, the resulting membership function is triangular with a maximum value less

than 1.
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Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the trapmf membership function.

mf = fismf("trapmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of trapmf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trimf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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trimf
Triangular membership function

Syntax
y = trimf(x,params)

Description
This function computes fuzzy membership values using a triangular membership function. You can
also compute this membership function using a fismf object. For more information, see “fismf
Object” on page 8-247.

This membership function is related to the trapmf membership function.

y = trimf(x,params) returns fuzzy membership values computed using the following triangular
membership function:

f x; a, b, c =

0, x ≤ a
x− a
b− a , a ≤ x ≤ b

c− x
c− b , b ≤ x ≤ c

0, c ≤ x

or, more compactly:

f x; a, b, c = max min x− a
b− a , c− x

c− b , o

To specify the parameters, a, b, and c, use params.

Membership values are computed for each input value in x.

Examples

Triangle-Shaped Membership Function

x = 0:0.1:10;
y = trimf(x,[3 6 8]);
plot(x,y)
xlabel('trimf, P = [3 6 8]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length three

Membership function parameters, specified as the vector [a b c]. Parameters a and c define the feet
of the membership function, and b defines its peak.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.
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Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the trimf membership function.

mf = fismf("trimf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of trimf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf | zmf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a

 trimf

8-247



tunefis
Tune fuzzy inference system or tree of fuzzy inference systems

Syntax
fisout = tunefis(fisin,paramset,in,out)
fisout = tunefis(fisin,paramset,custcostfcn)
fisout = tunefis( ___ ,options)
[fisout,summary] = tunefis( ___ )

Description
fisout = tunefis(fisin,paramset,in,out) tunes the fuzzy inference system fisin using the
tunable parameter settings specified in paramset and the training data specified by in and out.

fisout = tunefis(fisin,paramset,custcostfcn) tunes the fuzzy inference system using a
function handle to a custom cost function, custcostfcn.

fisout = tunefis( ___ ,options) tunes the fuzzy inference system with additional options from
the object options created using tunefisOptions.

[fisout,summary] = tunefis( ___ ) tunes the fuzzy inference system and returns additional
information about the tuning algorithm in summary.

Examples

Tune a Fuzzy Inference System

Create the initial fuzzy inference system using genfis.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

Tune the membership function parameters with "anfis".

fisout = tunefis(fisin,[in;out],x,y,tunefisOptions("Method","anfis"));

ANFIS info: 
    Number of nodes: 24
    Number of linear parameters: 10
    Number of nonlinear parameters: 15
    Total number of parameters: 25
    Number of training data pairs: 101
    Number of checking data pairs: 0
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    Number of fuzzy rules: 5

Start training ANFIS ...

   1      0.0694086
   2      0.0680259
   3      0.066663
   4      0.0653198
   5      0.0639961
Step size increases to 0.011000 after epoch 5.
   6      0.0626917
   7      0.0612787
   8      0.0598881
   9      0.0585193
Step size increases to 0.012100 after epoch 9.
  10      0.0571712

Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.057171

Tune Specific Parameter Setting of Fuzzy Inference System

Create the initial fuzzy inference system using genfis.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);            

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

Tune the rule parameter only. In this example, the pattern search method is used.

fisout = tunefis(fisin,rule,x,y,tunefisOptions("Method","patternsearch"));

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.346649             1      
    1          19       0.346649           0.5     Refine Mesh
    2          37       0.346649          0.25     Refine Mesh
    3          55       0.346649         0.125     Refine Mesh
    4          73       0.346649        0.0625     Refine Mesh
    5          91       0.346649       0.03125     Refine Mesh
    6         109       0.346649       0.01563     Refine Mesh
    7         127       0.346649      0.007813     Refine Mesh
    8         145       0.346649      0.003906     Refine Mesh
    9         163       0.346649      0.001953     Refine Mesh
   10         181       0.346649     0.0009766     Refine Mesh
   11         199       0.346649     0.0004883     Refine Mesh
   12         217       0.346649     0.0002441     Refine Mesh
   13         235       0.346649     0.0001221     Refine Mesh
   14         253       0.346649     6.104e-05     Refine Mesh
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   15         271       0.346649     3.052e-05     Refine Mesh
   16         289       0.346649     1.526e-05     Refine Mesh
   17         307       0.346649     7.629e-06     Refine Mesh
   18         325       0.346649     3.815e-06     Refine Mesh
   19         343       0.346649     1.907e-06     Refine Mesh
   20         361       0.346649     9.537e-07     Refine Mesh
Optimization terminated: mesh size less than options.MeshTolerance.

Tune a Fuzzy Inference System with Custom Parameter Settings

Create the initial fuzzy inference system using genfis.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

You can tune with custom parameter settings using setTunable or dot notation.

Do not tune input 1.

in(1) = setTunable(in(1),false);

For output 1:

• do not tune membership functions 1 and 2,
• do not tune membership function 3,
• set the minimum parameter range of membership function 4 to -2,
• and set the maximum parameter range of membership function 5 to 2.

out(1).MembershipFunctions(1:2) = setTunable(out(1).MembershipFunctions(1:2),false);
out(1).MembershipFunctions(3).Parameters.Free = false;
out(1).MembershipFunctions(4).Parameters.Minimum = -2;
out(1).MembershipFunctions(5).Parameters.Maximum = 2;

For the rule settings,

• do not tune rules 1 and 2,
• set the antecedent of rule 3 to non-tunable,
• allow NOT logic in the antecedent of rule 4,
• and do not ignore any outputs in rule 3.

rule(1:2) = setTunable(rule(1:2),false);
rule(3).Antecedent.Free = false;
rule(4).Antecedent.AllowNot = true;
rule(3).Consequent.AllowEmpty = false;

Set the maximum number of iterations to 20 and tune the fuzzy inference system.
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opt = tunefisOptions("Method","particleswarm");
opt.MethodOptions.MaxIterations = 20;
fisout = tunefis(fisin,[in;out;rule],x,y,opt);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0              90          0.3265           1.857        0
    1             180          0.3265           4.172        0
    2             270          0.3265           3.065        1
    3             360          0.3265           3.839        2
    4             450          0.3265           3.386        3
    5             540          0.3265           3.249        4
    6             630          0.3265           3.311        5
    7             720          0.3265           2.901        6
    8             810          0.3265           2.868        7
    9             900          0.3181            2.71        0
   10             990          0.3181           2.068        1
   11            1080          0.3181           2.692        2
   12            1170          0.3165           2.146        0
   13            1260          0.3165           1.869        1
   14            1350          0.3165           2.364        2
   15            1440          0.3165            2.07        0
   16            1530          0.3164           1.678        0
   17            1620          0.2978           1.592        0
   18            1710          0.2977           1.847        0
   19            1800          0.2954           1.666        0
   20            1890          0.2947           1.608        0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Prevent Overfitting Using K-Fold Cross-Validation

To prevent the overfitting of your tuned FIS to your training data using k-fold cross validation.

Load training data. This training data set has one input and one output.

load fuzex1trnData.dat

Create a fuzzy inference system for the training data.

opt = genfisOptions('GridPartition');
opt.NumMembershipFunctions = 4;
opt.InputMembershipFunctionType = "gaussmf";
inputData = fuzex1trnData(:,1);
outputData = fuzex1trnData(:,2);
fis = genfis(inputData,outputData,opt);

For reproducibility, set the random number generator seed.

rng('default')

Configure the options for tuning the FIS. Use the default tuning method with a maximum of 30
iterations.

tuningOpt = tunefisOptions;
tuningOpt.MethodOptions.MaxGenerations = 30;
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Configure the following options for using k-fold cross validation.

• Use a k-fold value of 3.
• Compute the moving average of the validation cost using a window of length 2.
• Stop each training-validation iteration when the average cost is 5% greater than the current

minimum cost.

tuningOpt.KFoldValue = 3;
tuningOpt.ValidationWindowSize = 2;
tuningOpt.ValidationTolerance = 0.05;

Obtain the settings for tuning the membership function parameters of the FIS.

 [in,out] = getTunableSettings(fis);

Tune the FIS.

[outputFIS,info] = tunefis(fis,[in;out],inputData,outputData,tuningOpt);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400          0.2421          0.5109        0
    2              590          0.2292          0.4688        0
    3              780          0.2292          0.4443        1
    4              970          0.2256          0.4145        0
    5             1160          0.2165          0.3957        0
    6             1350          0.2165          0.3835        1
    7             1540          0.2077          0.3548        0
    8             1730          0.2077          0.3435        1
    9             1920          0.2012          0.3414        0
   10             2110          0.1857           0.316        0
Optimization terminated: validation tolerance exceeded.

Cross validation iteration 1: Minimum validation cost 0.294718 found at training cost 0.207704

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400          0.2089          0.3924        0
    2              590          0.2059          0.3655        0
Optimization terminated: validation tolerance exceeded.

Cross validation iteration 2: Minimum validation cost 0.306682 found at training cost 0.220498

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400          0.2489          0.3936        0
    2              590          0.2438          0.3837        0
    3              780          0.2438          0.3779        1
    4              970          0.2067          0.3476        0
Optimization terminated: validation tolerance exceeded.

Cross validation iteration 3: Minimum validation cost 0.220104 found at training cost 0.255407

Evaluate the FIS for each of the training input values.

outputTuned = evalfis(outputFIS,inputData);

Plot the output of the tuned FIS along with the expected training output.
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plot([outputData,outputTuned])
legend("Expected Output","Tuned Output","Location","southeast")
xlabel("Data Index")
ylabel("Output value")

Input Arguments
fisin — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system
• fistree object — Tree of interconnected fuzzy inference systems

paramset — Tunable parameter settings
array

Tunable parameter settings, specified as an array of input, output, and rule parameter settings in the
input FIS. To obtain these parameter settings, use the getTunableSettings function with the input
fisin.
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paramset can be the input, output, or rule parameter settings, or any combination of these settings.

in — Input training data
matrix

Input training data, specified as an m-by-n matrix, where m is the total number of input datasets and
n is the number of inputs. The number of input and output datasets must be the same.

out — Output training data
matrix

Output training data, specified as an m-by-q matrix, where m is the total number of output datasets
and q is the number of outputs. The number of input and output datasets must be the same.

options — FIS tuning options
tunefisOptions option set

FIS tuning options, specified as a tunefisOptions object. You can specify the tuning algorithm
method and other options for the tuning process.

custcostfcn — custom cost functions
function handle

Custom cost function, specified as a function handle. The custom cost function evaluates fisout to
calculate its cost with respect to an evaluation criterion, such as input/output data. custcostfcn
must accept at least one input argument for fisout and returns a cost value. You can provide an
anonymous function handle to attach additional data for cost calculation, as described in this
example:

function fitness = custcost(cost,trainingData)
  ...
end
custcostfcn = @(fis)custcost(fis,trainingData);

Output Arguments
fisout — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system
• fistree object — Tree of interconnected fuzzy inference systems

fisout is the same type of FIS as fisin.

summary — Tuning algorithm summary
structure

Tuning algorithm summary, specified as a structure containing the following fields:
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• tuningOutputs — Algorithm-specific tuning information
• totalFunctionCount — Total number of evaluations of the optimization cost function
• totalRuntime — Total execution time of the tuning process in seconds
• errorMessage — Any error message generated when updating fisin with new parameter

values

tuningOutputs is a structure that contains tuning information for the algorithm specified in
options. The fields in tuningOutputs depend on the specified tuning algorithm. When using k-fold
cross validation, tuningOutputs is an array of k structures, each containing the tuning information
for one training-validation iteration.

When using k-fold validation, totalFunctionCount and totalRuntime the total function cost
function evaluations and total run time across all k training-validation iterations.

See Also
getTunableSettings | tunefisOptions

Introduced in R2019a
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update
Update fuzzy rule using fuzzy inference system

Syntax
ruleOut = update(ruleIn,fis)

Description
ruleOut = update(ruleIn,fis) updates the fuzzy rule ruleIn using the information in fuzzy
inference system fis and returns the resulting fuzzy rule in ruleOut.

Examples

Create Fuzzy Rule Using Text Description

Create a fuzzy rule using a verbose text description.

rule = fisrule("if service is poor and food is delicious then tip is average (1)");

Alternatively, you can specify the same rule using a symbolic text description.

rule = fisrule("service==poor & food==delicious => tip=average")

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: []
     Consequent: []
         Weight: 1
     Connection: 1

Before using rule with a fuzzy system, update the rule Antecedent and Consequent properties
using the update function.

fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 1
     Connection: 1
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Create Fuzzy Rule Using Numeric Description

Create a fuzzy rule using a numeric description. Specify that the rule has two input variables.

rule = fisrule([1 2 2 0.5 1],2)

rule = 
  fisrule with properties:

    Description: "input1==mf1 & input2==mf2 => output1=mf2 (0.5)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 0.5000
     Connection: 1

Before using rule with a fuzzy system, update the rule Description property using the update
function.

fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (0.5)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 0.5000
     Connection: 1

Input Arguments
ruleIn — Fuzzy rule
fisrule object | array of fisrule objects

Fuzzy rule, specified as a fisrule object or an array of fisrule objects. If ruleIn was created
using a:

• Text description, its Antecedent and Consequent properties are updated using the input and
output membership function indices in fis that correspond to the membership function names in
the Description property of ruleIn

• Numeric description, its Description property is updated using the input and output
membership function names in fis that correspond to the membership function indices in the
Antecedent and Consequent properties of ruleIn

If you specify ruleIn as an array of fisrule objects, then all of the rules are updated accordingly.

fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
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• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Output Arguments
ruleOut — Fuzzy rule
fisrule object | array of fisrule objects

Fuzzy rule, returned as a fisrule object or an array of fisrule objects.

See Also
fisrule

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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writeFIS
Save fuzzy inference system to file

Syntax
writeFIS(fis,fileName)

writeFIS(fis)
writeFIS(fis,fileName,"dialog")

Description
You can save a fuzzy inference system (FIS) in a .fis file using the writeFIS function. To load the
saved file, use the readfis function.

Note Do not manually edit the contents of a .fis file. Doing so can produce unexpected results
when loading the file using readfis.

writeFIS(fis,fileName) saves the fuzzy inference system fis to the current working folder
using file name fileName.

writeFIS(fis) opens a dialog box for saving a FIS. In this dialog box, specify the name and
location of the .fis file.

writeFIS(fis,fileName,"dialog") opens a dialog box for saving a FIS, setting the name of the
file in the dialog box to fileName. In the dialog box, specify the location for the file.

Examples

Save Fuzzy Inference System to File

Create a fuzzy inference system, and add an input variable with membership functions.

fis = mamfis('Name','tipper');
fis = addInput(fis,[0 10],'Name','service');
fis = addMF(fis,'service','gaussmf',[1.5 0],'Name','poor');
fis = addMF(fis,'service','gaussmf',[1.5 5],'Name','good');
fis = addMF(fis,'service','gaussmf',[1.5 10],'Name','excellent');

Save the fuzzy system in the current working folder in the file myFile.fis.

writeFIS(fis,'myFile');

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object
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Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fileName — File name
string | character vector

File name, specified as a string or character vector. If you do not specify the .fis extension in the
file name, writeFIS adds the extension.

Compatibility Considerations
writefis is now writeFIS
Behavior changed in R2018b

writefis is now writeFIS. To update your code, change the function name from writefis to
writeFIS. The syntaxes are equivalent.

Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

See Also
readfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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zmf
Z-shaped membership function

Syntax
y = zmf(x,params)

Description
This function computes fuzzy membership values using a spline-based Z-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-263.

This membership function is related to the smf and pimf membership functions.

y = zmf(x,params) returns fuzzy membership values computed using the spline-based Z-shaped
membership function given by:

f x; a, b =

1, x ≤ a

1− 2 x− a
b− a

2
, a ≤ x ≤ a + b

2

2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

0, x ≥ b

To specify the a and b parameters, use params.

Membership values are computed for each input value in x.

Examples

Z-Shaped Membership Function

x = 0:0.1:10;
y = zmf(x,[3 7]);
plot(x,y)
xlabel('zmf, P = [3 7]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the shoulder of
the membership function, and b defines its foot.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.
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Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the zmf membership function.

mf = fismf("zmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of zmf, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf | trimf

Topics
“Membership Functions” on page 1-11

Introduced before R2006a
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ClauseParameters
Parameter settings for rule clauses

Description
A ClauseParameters object contains tunable settings for either the antecedent or consequent of a
fuzzy rule.

Creation
Create a ClauseParameters object using the getTunableSettings function. The third output of
getTunableSettings contains RuleSettings objects. The Antecedent and Consequent
properties of each RuleSettings object are ClauseParameter objects for specifying the tunable
settings of the corresponding rule.

Properties
Free — Clause parameter values available for tuning
1 | 0 | array of logical values

Clause parameter values available for tuning, specified as a logical 1 or 0, or an array of logical
values. To apply different settings to each clause parameter, specify an array of logical values. To
apply the same setting to all clause parameter values, specify a scalar logical value.

When the ClauseParameters object represents a rule antecedent, the clause parameter values are
the membership functions corresponding to each input variable.

When the ClauseParameters object represents a rule consequent, the clause parameter values are
the membership functions corresponding to each output variable.

AllowNot — Flag indicating whether to allow NOT logic in rule clauses
1 | 0 | array of logical values

Flag indicating whether to allow NOT logic in rule clauses, specified as a logical 1 or 0, or an array of
logical values. To apply different settings to each clause parameter, specify an array of logical values.
To apply the same setting to all clause parameter values, specify a scalar logical value.

AllowEmpty — Flag indicating whether to allow ignoring inputs and outputs in rule clauses
1 | 0 | array of logical values

Flag indicating whether to allow ignoring inputs and outputs in rule clauses, specified as a logical 1
or 0, or an array of logical values. To apply different settings to each clause parameter, specify an
array of logical values. To apply the same setting to all clause parameter values, specify a scalar
logical value.

Examples
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Obtain Tunable Settings of Rules from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of rules of the fuzzy inference system.

[~,~,rule] = getTunableSettings(tree)

rule=18×1 object
  16x1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName
      ⋮

You can use dot notation to specify the tunable settings of rules.

For the first rule, do not tune input 1 membership function index and do not ignore output 1
membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Consequent.AllowEmpty(1) = false;

For the second rule, allow NOT logic for input 2 membership function index.

rule(2).Antecedent.AllowNot(2) = true;

See Also
RuleSettings | VariableSettings | getTunableSettings

Introduced in R2019a
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evalfisOptions
Option set for evalfis function

Description
Use an evalfisOptions object to specify options for the evalfis function.

Creation

Syntax
opt = evalfisOptions
opt = evalfisOptions(Name,Value)

Description

opt = evalfisOptions creates an option set for the evalfis function with default options. To
modify the properties of this option set, use dot notation.

opt = evalfisOptions(Name,Value) sets properties using name-value pairs. For example,
evalfisOptions('NumSamplePoints',51) creates an option set and sets the number of output
fuzzy set samples to 51. You can specify multiple name-value pairs. Enclose each property name in
single quotes.

Properties
NumSamplePoints — Number of sample points in output fuzzy sets
101 (default) | integer greater than 1

Number of sample points in output fuzzy sets, specified as an integer greater than 1.

To reduce memory usage while evaluating a Mamdani FIS, specify fewer samples. Doing so sacrifices
the accuracy of the defuzzified output value.

Reducing the number of samples can make the output area for defuzzification zero. In this case, the
defuzzified output value is the midpoint of the output variable range.

Note evalfis ignores this property when evaluating a Sugeno FIS.

OutOfRangeInputValueMessage — Diagnostic message behavior when an input is out of
range
"warning" (default) | "error" | "none"

Diagnostic message behavior when an input is out of range, specified as one of the following:
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• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When an input value is out of range, corresponding rules in the fuzzy system can have unexpected
firing strengths.

NoRuleFiredMessage — Diagnostic message behavior when no rules fire
"warning" (default) | "error" | "none"

Diagnostic message behavior when no rules fire, specified as one of the following:

• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When NoRuleFiredMessage is "warning" or "none" and no rules fire for a given output, the
defuzzified output value is set to its mean range value.

EmptyOutputFuzzySetMessage — Diagnostic message behavior when an output fuzzy set is
empty
"warning" (default) | "error" | "none"

Diagnostic message behavior when an output fuzzy set is empty, specified as one of the following:

• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When EmptyOutputFuzzySetMessage is "warning" or "none" and an output fuzzy set is empty,
the defuzzified value for the corresponding output is set to its mean range value.

This diagnostic message applies only to Mamdani systems.

Object Functions
evalfis Evaluate fuzzy inference system

Examples

Create Option Set for Evaluating FIS

Create option set object, specifying the number of sample points for output fuzzy sets.

options = evalfisOptions('NumSamplePoints',51)

options = 
  EvalFISOptions with properties:

                NumSamplePoints: 51
    OutOfRangeInputValueMessage: "warning"
             NoRuleFiredMessage: "warning"
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     EmptyOutputFuzzySetMessage: "warning"

Alternatively, create a default option set, and configure properties using dot notation.

options = evalfisOptions;
options.NumSamplePoints = 51;

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When used for code generation, an evalfisOptions object stores its
OutOfRangeInputValueMessage, NoRuleFiredMessage, and
EmptyOutputFuzzySetMessage properties as character vectors rather than strings.

• When evaluating a fuzzy inference system in Simulink, it is recommended to not use evalfis or
evalfisOptions within a MATLAB Function block. Instead, evaluate your fuzzy inference system
using the Fuzzy Logic Controller block.

See Also
Functions
evalfis

Introduced in R2018a
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fismf
Fuzzy membership function

Description
Use a fismf object to represent a type-1 fuzzy membership function. For each input and output
variable in a fuzzy inference system (FIS), one or more membership functions define the possible
linguistic sets for that variable. For more information on membership functions, see “Foundations of
Fuzzy Logic” on page 1-8.

Creation

Syntax
mf = fismf
mf = fismf(type,parameters)
mf = fismf('Name',name)
mf = fismf(type,parameters,'Name',name)

Description

mf = fismf creates a fuzzy membership function (MF) with default type, parameters, and name. To
change the membership function properties, use dot notation.

mf = fismf(type,parameters) sets the Type and Parameters properties.

mf = fismf('Name',name) sets the Name property.

mf = fismf(type,parameters,'Name',name) sets the Type, Parameters, and Name
properties.

Properties
Name — Membership function name
"mf" (default) | string | character vector

Membership function name, specified as a string or character vector.

Type — Membership function type
"trimf" (default) | string | character vector | function handle

Membership function type, specified as a string or character vector that contains the name of a
function in the current working folder or on the MATLAB path. You can also specify a handle to such a
function. When you specify Type, you must also specify Parameters.

This table describes the values that you can specify for Type.
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Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped membership
function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination membership

function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

"psigmf" Product of two sigmoidal membership
functions

psigmf

"zmf" Z-shaped membership function zmf
"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
"constant" Constant membership function for

Sugeno output membership functions
“Sugeno Fuzzy Inference Systems” on
page 2-3

"linear" Linear membership function for
Sugeno output membership functions

String or character
vector

Name of a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

“Build Fuzzy Systems Using Custom
Functions” on page 2-40

Function handle Handle to a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

Note When you change Type using dot notation, the values in Parameters are automatically
converted for the new membership function type.

Parameters — Membership function parameters
[0 0.5 1] (default) | vector

Membership function parameters, specified as a vector. The length of the parameter vector depends
on the membership function type. When you specify Parameters, you must also specify Type.

Object Functions
evalmf Evaluate fuzzy membership function

9 Objects

9-8



Examples

Create Membership Function

Create fuzzy membership function with default settings.

mf = fismf;

To modify the membership function settings, use dot notation. For example, specify a Gaussian
membership function with a standard deviation of 2 and a mean of 10.

mf.Type = "gaussmf";
mf.Parameters = [2 10];

Create Membership Function with Specified Parameters

Create a trapezoidal membership function with specified parameters.

mf = fismf("trapmf",[10 15 20 25]);

Create Membership Function with Specified Name

Create a membership function with the name "large".

mf = fismf("Name","large");

See Also
fisrule | fisvar | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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fismftype2
Interval type-2 fuzzy membership function

Description
Use a fismftype2 object to represent an interval type-2 fuzzy membership function (MF), which
introduce additional uncertainty into a fuzzy inference system.

An interval type-2 membership function is represented by an upper and a lower membership function.
The values of the upper membership function are always greater than or equal to the corresponding
lower membership function values. The area enclosed by these membership functions is the footprint
of uncertainty (FOU). For example, the following plot shows three type-2 membership functions for a
given input variable.

For more information on type-2 membership functions, see “Type-2 Fuzzy Inference Systems” on
page 2-7.
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Creation

Syntax
mf = fismftype2
mf = fismftype2(type,upperParameters)
mf = fismftype2( ___ ,Name,Value)

Description

mf = fismftype2 creates a type-2 fuzzy membership function with default name, type, upper MF
parameters, and lower MF configuration. To change the membership function properties, use dot
notation.

mf = fismftype2(type,upperParameters) sets the Type and UpperParameters properties of
the membership function.

mf = fismftype2( ___ ,Name,Value) sets the Name, LowerScale, or LowerLag properties of the
membership function using one or more name-value pair arguments for any of the other syntaxes.

Properties
Name — Membership function name
"mf" (default) | string | character vector

Membership function name, specified as a string or character vector.

Type — Membership function type
"trimf" (default) | string | character vector | function handle

Membership function type for both the upper and lower membership function, specified as a string or
character vector that contains the name of a function in the current working folder or on the MATLAB
path. You can also specify a handle to such a function. When you specify Type, you must also specify
UpperParameters.

This table describes the values that you can specify for Type.

Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped membership
function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination membership

function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf
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Membership
Function Type

Description For More Information

"psigmf" Product of two sigmoidal membership
functions

psigmf

"zmf" Z-shaped membership function zmf
"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
String or character
vector

Name of a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

“Build Fuzzy Systems Using Custom
Functions” on page 2-40

Function handle Handle to a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

Note When you change Type using dot notation, the values in Parameters are automatically
converted for the new membership function type.

UpperParameters — Upper membership function parameters
[0 0.5 1] (default) | vector

Upper membership function parameters, specified as a vector. The length of the parameter vector
depends on the membership function type. When you specify Parameters, you must also specify
Type.

LowerScale — Lower membership function scaling factor
1 (default) | positive scalar less than or equal to 1

Lower membership function scaling factor, specified as a positive scalar less than or equal to 1. Use
LowerScale to define the maximum value of the lower membership function.

Depending on the value of LowerLag, the actual maximum lower membership function value can be
less than LowerScale.

LowerLag — Lower membership function delay factor
scalar value between 0 and 1 | vector of length 2

Lower membership function delay factor, specified as a scalar value or a vector of length two. You can
specify lag values between 0 and 1, inclusive.

The following membership function types support only a scalar LowerLag value:

• Symmetric MFs — gaussmf and gbellmf
• One-sided MFs — sigmf, smf, and zmf

All other built-in membership functions support either a scalar or vector LowerLag value. For these
membership functions, when you specify a:
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• Scalar value, the same lag value is used for both the left and right side of the membership
function.

• Vector value, you can define different lag values for the left and right sides of the membership
function.

The lag value defines the point at which the lower membership function value starts increasing from
zero based on the value of the upper membership function. For example, a lag value of 0.1 indicates
that the lower membership function becomes positive when the upper membership function has a
membership value of 0.1.

By default, the lag value is 0.2. However, for some membership function types and upper
membership function parameters, the software is unable to set a lower lag value to 0.2. In such a
case, the default lag value is set to a different valid value..

When the lag value is zero, the lower membership function starts increasing at the same point as the
upper membership function.

Some membership function types restrict the maximum lag value. For example, LowerLag must be
less than 1 for the gaussmf, gauss2mf, gbellmf, sigmf, dsigmf, and psigmf membership
functions.

Object Functions
evalmf Evaluate fuzzy membership function

Examples

Create Type-2 Membership Function

Create type-2 membership function with default settings.

mf = fismftype2;

To modify the membership function settings, use dot notation. For example, specify a Gaussian upper
membership function with a standard deviation of 2 and a mean of 10.

mf.Type = "gaussmf";
mf.UpperParameters = [2 10];

Specify the maximum lower membership function value as 0.8.

mf.LowerScale = 0.8;

Configure the lower membership function to start increasing when the upper membership function
reaches 0.3.

mf.LowerLag = 0.3;

Create Type-2 Membership Function with Specified Upper MF Parameters

Create a trapezoidal type-2 membership function with specified upper MF parameters.
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mf = fismftype2("trapmf",[3 4 6 7])

mf = 
  fismftype2 with properties:

               Type: "trapmf"
    UpperParameters: [3 4 6 7]
         LowerScale: 1
           LowerLag: [0.2000 0.2000]
               Name: "mf"

By default, the lower membership function has a maximum value of 1 and starts increasing when the
upper MF is 0.2.

Configure Lower MF Parameters

Create a triangular type-2 membership function, specifying a maximum lower MF value of 0.9 and a
membership function lag of 0.1.

mf = fismftype2("trimf",[1 2 3],'LowerScale',0.9,'LowerLag',0.1);

See Also
fismf | fisrule | fisvar | mamfistype2 | sugfistype2

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31
“Type-2 Fuzzy Inference Systems” on page 2-7

Introduced in R2019b
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fisrule
Fuzzy rule

Description
Use fisrule objects to represent fuzzy if-then rules that relate input membership function
conditions to corresponding output membership functions. The if portion of a fuzzy rule is the
antecedent, which specifies the membership function for each input variable. The then portion of a
fuzzy rule is the consequent, which specifies the membership function for each output variable. For
more information on membership functions and fuzzy rules, see “Foundations of Fuzzy Logic” on page
1-8.

Creation
To create fuzzy rule objects, use the fisrule function. Using this function, you can create a single
fuzzy rule or a vector of multiple fuzzy rules.

Syntax
rule = fisrule
rule = fisrule(ruleText)
rule = fisrule(ruleValues,numInputs)

Description

rule = fisrule creates a single fuzzy rule with the default description "input1==mf1 =>
output1=mf1".

rule = fisrule(ruleText) creates one or more fuzzy rules using the text descriptions in
ruleText.

rule = fisrule(ruleValues,numInputs) creates one or more fuzzy rules using the numeric
rule values in ruleValues. Specify the number of rule input variables using numInputs.

Input Arguments

ruleText — Text rule description
string | character vector | string array | character array

Text rule description, specified as one of the following:

• String or character vector specifying a single rule

rule = "If service is poor or food is rancid then tip is cheap";
• String array, where each element corresponds to a rule. For example:

ruleList = ["If service is poor or food is rancid then tip is cheap";
            "If service is good then tip is average";
            "If service is excellent or food is delicious then tip is generous"];
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• Character array where each row corresponds to a rule. For example:
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

For each rule, use one of the following rule text formats:

• Verbose — Linguistic expression in the following format, using the IF and THEN keywords:

"IF <antecedent> THEN <consequent> (<weight>)"

In <antecedent>, specify the membership function for each input variable using the IS or IS
NOT keyword. Connect these conditions using the AND or OR keywords. If a rule does not use a
given input variable, omit it from the antecedent.

In <consequent>, specify the condition for each output variable using the IS or IS NOT
keyword, and separate these conditions using commas. The IS NOT keyword is not supported for
Sugeno outputs. If a rule does not use a given output variable, omit it from the consequent.

Specify the weight using a positive numerical value.

For example:

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"
• Symbolic — Expression that uses the symbols in the following table instead of keywords. There is

no symbol for the IF keyword.

Symbol Keyword
== IS (in rule antecedent)
~= IS NOT
& AND
| OR
=> THEN
= IS (in rule consequent)

For example, the following symbolic rule is equivalent to the previous verbose rule.

"A==a & B~=b => X=x, Y~=y (1)"

When you specify a rule using a text description, fisrule sets the Description, Weight, and
Connection properties of the rule based on the description.

ruleValues — Numeric rule description
row vector | numeric array

Numeric rule description, specified as one of the following:

• Row vector to specify a single fuzzy rule
• Array, where each row of ruleValues specifies one rule

For each row, the numeric rule description has M+N+2 columns, where M is the number of input
variables and N is the number of output variables. Each column contains the following information:
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• The first M columns specify input membership function indices and correspond to the
Antecedent property of the rule. To indicate a NOT condition, specify a negative value. If a rule
does not use a given input, set the corresponding index to 0. For each rule, at least one input
membership function index must be nonzero.

• The next N columns specify output membership function indices and correspond to the
Consequent property of the rule. To indicate a NOT condition for Mamdani systems, specify a
negative value. NOT conditions are not supported for Sugeno outputs. If a rule does not use a
given output, set the corresponding index to 0. For each rule, at least one output membership
function index must be nonzero.

• Column M+N+1 specifies the rule weight and corresponds to the Weight property of the rule.
• The final column specifies the antecedent fuzzy operator and corresponds to the Connection

property of the rule.

When you specify a rule using ruleVlaues, fisrule sets the Description property using default
variable and membership function names.

numInputs — Number of input variables
positive integer

Number of input variables for the rule, specified as a positive integer. If you specify the rule
description using ruleValues, you must also specify the number of input variables. fisrule parses
the rule antecedent values into the membership function indices for the input and output variables
using numInputs.

Properties
Description — Text rule description
string | character vector

Text rule description, specified as a string or character vector. The rule description is stored as a
symbolic expression no matter how you specify the rule. For example, if you specify the following
verbose rule using ruleText:

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"

The stored rule is:

"A==a & B~=b => X=x, Y~=y (1)"

For more information on the verbose and symbolic rule formats, see the ruleText input argument.

When you specify a rule using ruleVlaues, fisrule sets the Description property using default
variable and membership function names. Before using the rule in a fuzzy system, you must update
the description to use the variable and membership function names from that fuzzy system using the
update function.

Antecedent — Rule antecedent
numeric vector

Rule antecedent, specified as a numeric vector of length M, where M is the number of input variables.
Each element of Antecedent contains one of the following values:

• Positive integer — The index of an input membership function, which represents an IS condition
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• Negative integer — The negative of an input membership function, which represents an IS NOT
condition

• 0 — A don't care condition, which means that the rule does not use the corresponding input
variable

This value is set when you create a fuzzy rule using ruleValues. If you create a fuzzy rule using
ruleText, before using the rule in a fuzzy system, you must populate the Antecedent property
using the update function.

If you update the indices in the rule antecedent using dot notation, the Description property is not
updated to reflect the changes. To update the rule description, use the update function.

Consequent — Rule consequent
numeric vector

Rule consequent, specified as a numeric vector of length N, where N is the number of output
variables. Each element of Consequent contains one of the following values:

• Positive integer — The index of an output membership function, which represents an IS condition
• Negative integer — The negative of an output membership function, which represents an IS NOT

condition
• 0 — A don't care condition, which means that the rule does not use the corresponding output

variable

This value is set when you create a fuzzy rule using ruleValues. If you create a fuzzy rule using
ruleText, before using the rule in a fuzzy system, you must populate the Consequent property
using the update function.

If you update the indices in the rule consequent using dot notation, the Description property is not
updated to reflect the changes. To update the rule description, use the update function.

Weight — Rule weight
1 (default) | positive numeric scalar

Rule weight, specified as a positive numeric scalar in the range [0 1].

If you update the rule weight using dot notation, the weight value in the Description property text
is also updated.

Connection — Rule antecedent connection
1 | 2

Rule antecedent connection, specified as one of the following:

• 1 — Evaluate rule antecedents using the AND operator.
• 2 — Evaluate rule antecedents using the OR operator.

If you update the rule connection using dot notation, the antecedent operators in the Description
property text are also updated.

Object Functions
update Update fuzzy rule using fuzzy inference system
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Examples

Create Fuzzy Rule

Create a default fuzzy rule.

rule = fisrule

rule = 
  fisrule with properties:

    Description: "input1==mf1 => output1=mf1 (1)"
     Antecedent: 1
     Consequent: 1
         Weight: 1
     Connection: 1

To modify the rule properties, use dot notation. For example, specify a rule weight of 0.5.

rule.Weight = 0.5;

Create Fuzzy Rule Using Text Description

Create a fuzzy rule using a verbose text description.

rule = fisrule("if service is poor and food is delicious then tip is average (1)");

Alternatively, you can specify the same rule using a symbolic text description.

rule = fisrule("service==poor & food==delicious => tip=average")

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: []
     Consequent: []
         Weight: 1
     Connection: 1

Before using rule with a fuzzy system, update the rule Antecedent and Consequent properties
using the update function.

fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 1
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     Connection: 1

Create Fuzzy Rule Using Numeric Description

Create a fuzzy rule using a numeric description. Specify that the rule has two input variables.

rule = fisrule([1 2 2 0.5 1],2)

rule = 
  fisrule with properties:

    Description: "input1==mf1 & input2==mf2 => output1=mf2 (0.5)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 0.5000
     Connection: 1

Before using rule with a fuzzy system, update the rule Description property using the update
function.

fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (0.5)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 0.5000
     Connection: 1

Create Multiple Fuzzy Rules

Create a string array of text rule descriptions.

rules1 = ["if service is poor or food is rancid then tip is cheap (0.5)"...
          "if service is excellent and food is not rancid then tip is generous (0.75)"];

Create an array of fuzzy rules using these descriptions.

fuzzyRules1 = fisrule(rules1)

fuzzyRules1 = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
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    Connection

  Details:
                                Description                        
         __________________________________________________________

    1    "service==poor | food==rancid => tip=cheap (0.5)"         
    2    "service==excellent & food~=rancid => tip=generous (0.75)"

Alternatively, you can specify multiple rules using an array of numeric rule descriptions.

rules2 = [1 1 1 0.5 2;
          2 -1 3 0.75 1];
fuzzyRules2 = fisrule(rules2,2)

fuzzyRules2 = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                            Description                   
         _________________________________________________

    1    "input1==mf1 | input2==mf1 => output1=mf1 (0.5)" 
    2    "input1==mf2 & input2~=mf1 => output1=mf3 (0.75)"

See Also
fismf | fisvar | mamfis | mamfistype2 | sugfis | sugfistype2

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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fistree
Network of connected fuzzy inference systems

Description
Use a fistree object to represent a tree of interconnected fuzzy inference systems.

Creation
Syntax
fisTree = fistree(fis,connections)
fisTree = fistree( ___ ,'DisableStructuralChecks',disableChecks)

Description

fisTree = fistree(fis,connections) creates a network of interconnected fuzzy inference
system objects, setting its FIS and Connections properties.

fisTree = fistree( ___ ,'DisableStructuralChecks',disableChecks) sets the
DisableStructuralChecks property.

Properties
FIS — Fuzzy inference systems
array

This property is read-only.

Fuzzy inference systems, specified as an array FIS objects. You can specify any combination of
mamfis, sugfis, mamfistype2, and sugfistype2 objects. Each fuzzy inference system in the FIS
array must have at least one input and one output for fistree construction. To evaluate a fistree,
each fuzzy inference system must have at least one rule.

Connections — Connections between fuzzy inference systems
string array

Connections between fuzzy inference systems, specified as a two-dimensional string array. Each row
represents a connection between two FIS objects. Specify connections as follows:

1 Output-to-input connections, ["fromFISName/fromFISOutputName" "toFISName/
toFISInputName"]. In this case, output of "fromFISName" is used as the input of
"toFISName". "fromFISName" and "toFISName" must be different.

2 Input-to-input connections, ["fromFISName/fromFISInputName" "toFISName/
toFISInputName"]. In this case, inputs of "fromFISName" and "toFISName" use the same
input values for evaluation. "fromFISName" and "toFISName" can be same or different.

The following diagram describes different connection types.
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Connection ["fis1/x" "fis2/c"] is specified between output "x" of "fis1" and input "c" of "fis2".
Connection ["fis1/a" "fis1/b"] is specified between inputs "a" and "b" of "fis1". In this diagram,
the fistree inputs are "fis1/a" and "fis2/d" and the output is "fis2/y".

Connections must satisfy the following conditions:

1 A fistree object must have at least one FIS input without any incoming connection and one FIS
output without any outgoing connection.

2 A FIS input cannot have more than one incoming connection.
3 A FIS output can have more than one outgoing connection.
4 An input and output of the same FIS cannot be connected. In other words, you cannot create

loops between connected FIS objects.
5 Symmetric connections cannot be specified between two inputs, ["fis1/a" "fis1/

b";"fis1/b" "fis1/a"] is not allowed. Either ["fis1/a" "fis1/b"] or ["fis1/b"
"fis1/a"] can be specified.

6 Self-input loops are not allowed, ["fis1/a" "fis1/a"] cannot be specified.

Inputs — Inputs to the FIS tree
string array

Inputs to the FIS tree, specified as an array of strings. Inputs are automatically determined using
the specified connections of the fistree object. FIS inputs with no incoming connections are
included in Inputs. Update this property by updating the connections of the fistree object.

Outputs — Outputs of the FIS tree
string

Outputs of the FIS tree, specified as a string. Outputs are automatically determined using the
specified connections of the fistree object. FIS outputs without any outgoing connections are
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included in Outputs. You can update this property after initial construction of the fistree object.
Existing outputs can be removed or new outputs can be added. Outputs cannot be empty.

DisableStructuralChecks — Flag for disabling structural checks
false (default) | true

Flag for disabling structural checks, inputs, and outputs, specified as either false or true. Set
DisableStructuralChecks to true to disable automatic updates of connections, inputs, and
outputs when a FIS is updated after construction of a fistree object. Disabling structural checks
can produce an unexpected failure in the evalfis function.

Object Functions
evalfis Evaluate fuzzy inference system
getTunableSettings Obtain tunable settings from fuzzy inference system
getTunableValues Obtain values of tunable parameters from fuzzy inference system
setTunableValues Specify tunable parameter values of a fuzzy inference system

Examples

Create a Tree of Connected Fuzzy Inference Systems

Create a Mamdani fuzzy inference system and a Sugeno fuzzy inference system.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Define the desired connections between the two fuzzy inference systems.

con1 = ["fis1/output1" "fis2/input1"];
con2 = ["fis1/input1" "fis1/input2"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],[con1; con2])

tree = 
  fistree with properties:

                        FIS: [1x2 FuzzyInferenceSystem]
                Connections: [2x2 string]
                     Inputs: [2x1 string]
                    Outputs: "fis2/output1"
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Update Fuzzy Inference Systems in a FIS Tree

Create a FIS tree.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
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fisT = fistree([fis1 fis2],[]);

Display the FIS tree configuration.

plotfis(fisT)

FIS Names:
    fis1
    fis2

Connections:
    []

Inputs:
    fis1/input1
    fis1/input2
    fis2/input1
    fis2/input2

Outputs:
    fis1/output1
    fis2/output1

Add FIS

Add fis3 to fisT.

fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fisT.FIS(end+1) = fis3;

Add connections between fis1, fis2, and fis3.

fisT.Connections = ["fis1/output1" "fis3/input1";"fis2/output1" "fis3/input2"];

Display the updated FIS tree configuration.

plotfis(fisT)

FIS Names:
    fis1
    fis2
    fis3

Connections:
    From            To
    ------------    -----------
    fis1/output1    fis3/input1
    fis2/output1    fis3/input2

Inputs:
    fis1/input1
    fis1/input2
    fis2/input1
    fis2/input2

Outputs:
    fis3/output1
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Remove FIS

Remove fis1 from fisT.

fisT.FIS(1) = [];

Display the updated FIS tree configuration.

plotfis(fisT)

FIS Names:
    fis2
    fis3

Connections:
    From            To
    ------------    -----------
    fis2/output1    fis3/input2

Inputs:
    fis2/input1
    fis2/input2
    fis3/input1

Outputs:
    fis3/output1

Use Same Value for Multiple Inputs of a FIS Tree

Create fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create a connection between input 2 of fis1 and input 1 of fis2.

con3 = ["fis1/input2" "fis2/input1"];

Create the FIS tree.

fuzzTree = fistree([fis1 fis2 fis3],[con1;con2;con3]);

Display the inputs of the FIS tree.

fuzzTree.Inputs

ans = 3x1 string
    "fis1/input1"
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    "fis1/input2"
    "fis2/input2"

Evaluate the fuzzy tree. Specify values for input 1 of fis1, input 2 of fis1, and input 2 of fis2. The
value for input 2 of fis1 is also sent to input 1 of fis2.

output = evalfis(fuzzTree,[0.8 0.25 0.7]);

Update FIS Tree Outputs

This example shows how to add or remove FIS tree outputs.

Add Outputs

Create fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create the FIS tree.

fuzzTree = fistree([fis1 fis2 fis3],[con1;con2]);

Display outputs of the FIS tree. By default, the only open FIS output (from fis3) is an output of the
FIS tree.

fuzzTree.Outputs

ans = 
"fis3/output1"

Add the output of fis2 outputs to the tree output list.

fuzzTree.Outputs(end+1) = "fis2/output1";

Display the updated output list of the FIS tree.

fuzzTree.Outputs

ans = 2x1 string
    "fis3/output1"
    "fis2/output1"

Evaluate the FIS tree. The result contains the outputs from fis3 and fis2.

evalfis(fuzzTree,[0.5 0.2 0.8 0.45])
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ans = 1×2

    0.1507    0.1579

Remove Outputs

Remove the first output from the list.

fuzzTree.Outputs(1) = [];

Display the updated output list of the FIS tree.

fuzzTree.Outputs

ans = 
"fis2/output1"

Evaluate the FIS tree again. The result now contains the output of only fis2.

evalfis(fuzzTree,[0.5 0.2 0.8 0.45])

ans = 0.1579

Create Incremental FIS Tree

This example shows construction of an incremental FIS tree. For more information on the types of
fuzzy tree structures, see “Fuzzy Trees” on page 2-52.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "color";
fis1.Inputs(2).Name = "doors";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(2).Name = "power";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis3.Inputs(2).Name = "autopilot";
fis3.Outputs(1).Name = "predition";

Create a connection between output 1 of fis1 and input 1 of fis2.

con1 = ["fis1/output1" "fis2/input1"];

Create a connection between output 1 of fis2 and input 1 of fis3.

con2 = ["fis2/output1" "fis3/input1"];

Create the FIS tree.

incTree = fistree([fis1 fis2 fis3],[con1;con2]);

Display the inputs of the FIS tree.

incTree.Inputs

ans = 4x1 string
    "fis1/color"
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    "fis1/doors"
    "fis2/power"
    "fis3/autopilot"

Display outputs of the FIS tree.

incTree.Outputs

ans = 
"fis3/predition"

Create Cascaded FIS Tree

This example shows construction of a cascaded FIS tree. For more information on the types of fuzzy
tree structures, see “Fuzzy Trees” on page 2-52.

Create fuzzy systems fis1, fis2, fis3, and fis4, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "dist_obs";
fis1.Inputs(2).Name = "angle_obs";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(1).Name = "dist_tar";
fis2.Inputs(2).Name = "angle_tar";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis4 = mamfis('Name','fis4','NumInputs',2,'NumOutputs',1);
fis4.Inputs(2).Name = "preheading_robot";
fis4.Outputs(1).Name = "heading_robot";

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create a connection between output 1 of fis3 and input 1 of fis4.

con3 = ["fis3/output1" "fis4/input1"];

Create the FIS tree.

casTree = fistree([fis1 fis2 fis3 fis4],[con1;con2;con3]);

Display the inputs of the FIS tree.

casTree.Inputs

ans = 5x1 string
    "fis1/dist_obs"
    "fis1/angle_obs"
    "fis2/dist_tar"
    "fis2/angle_tar"
    "fis4/preheading_robot"
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Display the outputs of the FIS tree.

casTree.Outputs

ans = 
"fis4/heading_robot"

Create Aggregated FIS Tree

This example shows construction of an aggregated FIS tree. For more information on the types of
fuzzy tree structures, see “Fuzzy Trees” on page 2-52.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "dist_obs";
fis1.Inputs(2).Name = "angle_obs";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(1).Name = "dist_tar";
fis2.Inputs(2).Name = "angle_tar";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis3.Outputs(1).Name = "heading_robot";

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create the FIS tree.

aggTree = fistree([fis1 fis2 fis3],[con1;con2]);

Display the inputs of the FIS tree.

aggTree.Inputs

ans = 4x1 string
    "fis1/dist_obs"
    "fis1/angle_obs"
    "fis2/dist_tar"
    "fis2/angle_tar"

Display the outputs of the FIS tree.

aggTree.Outputs

ans = 
"fis3/heading_robot"
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Create and Evaluate Parallel FIS Tree

This example shows construction of a parallel FIS tree. For more information on the types of fuzzy
tree structures, see “Fuzzy Trees” on page 2-52.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Create the FIS tree such that all of the FIS objects are in parallel; that is, there are no
interconnections and all the FIS outputs are FIS tree outputs.

parTree = fistree([fis1 fis2],[]);

Display the inputs of the FIS tree.

parTree.Inputs

ans = 4x1 string
    "fis1/input1"
    "fis1/input2"
    "fis2/input1"
    "fis2/input2"

Display the outputs of the FIS tree.

parTree.Outputs

ans = 2x1 string
    "fis1/output1"
    "fis2/output1"

Evaluate the FIS tree.

output = evalfis(parTree,[0.1 0.3 0.8 0.4]);

Generate the final output by summing the FIS tree outputs.

finalOutput = sum(output);

See Also
mamfis | mamfistype2 | sugfis | sugfistype2 | tunefis

Topics
“Fuzzy Trees” on page 2-52
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2

Introduced in R2019a
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fisvar
Fuzzy variable

Description
Use fisvar objects to represent the input and output variables in a fuzzy inference system (FIS). For
more information on creating fuzzy inference systems, see mamfis, sugfis, mamfistype2, and
sugfistype2.

Creation

Syntax
var = fisvar
var = fisvar(range)
var = fisvar('Name',name)
var = fisvar(range,'Name',name)

Description

var = fisvar creates a fuzzy variable with a default name, default range, and no membership
functions. To change the variable properties, use dot notation.

var = fisvar(range) sets the Range property.

var = fisvar('Name',name) sets the Name property.

var = fisvar(range,'Name',name) sets both the Range and Name properties.

Properties
Name — Variable name
"var" (default) | string | character vector

Variable name, specified as a string or character vector.

Range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less than the
second element. The first element specifies the lower bound of the range, and the second element
specifies the upper bound of the range.

MembershipFunctions — Membership functions
[] (default) | vector of fismf objects | vector of fismftype2 objects

Membership functions, specified as a vector of fismf or fismftype2 objects. To add membership
functions to a fuzzy variable:
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• Use the addMF function.
• Create a vector of fismf objects, and assign it to MembershipFunctions.
• Create a vector of fismftype2 objects, and assign it to MembershipFunctions.

You can modify the properties of the membership functions using dot notation.

Object Functions
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable

Examples

Create Fuzzy Variable

Create a fuzzy variable with default properties.

var = fisvar;

To modify the properties of a fisvar object, use dot notation. For example, specify the range of the
fuzzy variable to be from -5 to 5.

var.Range = [-5 5];

Create Fuzzy Variable with Specified Range

Create a fuzzy variable with an input range from -10 to 10.

var = fisvar([-10 10]);

Create Fuzzy Variable with Specified Name

Create a fuzzy variable with the name "speed".

var = fisvar("Name","speed");

Add Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range.

var = fisvar([0 1]);

Add a membership function to the variable, specifying a trapezoidal membership function, and set the
membership function parameters.

var = addMF(var,"trapmf",[-0.5 0 0.2 0.4]);
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You can also specify the name of your membership when you add it to a fuzzy variable. For example,
add a membership function called "large".

var = addMF(var,"trapmf",[0.6 0.8 1 1.5],'Name',"large");

View the membership functions.

var.MembershipFunctions

ans = 
  1x2 fismf array with properties:

    Type
    Parameters
    Name

  Details:
          Name        Type               Parameters         
         _______    ________    ____________________________

    1    "mf1"      "trapmf"    -0.5       0     0.2     0.4
    2    "large"    "trapmf"     0.6     0.8       1     1.5

Alternatively, you can add a default membership function to a fuzzy variable and set its parameters
using dot notation.

var = fisvar([0 1]);
var = addMF(var);
var.MembershipFunctions(1).Type = "trapmf";
var.MembershipFunctions(1).Parameters = [-0.5 0 0.2 0.4];

Add Type-2 Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range. By default, this variable has no membership functions.

var = fisvar([0 9]);

To add a type-2 membership function to a variable with no existing membership functions, specify
either a LowerLag or LowerScale value for the membership function. For example specify a lower
scale value.

var = addMF(var,"trimf",[0 3 6],'LowerScale',1);

Once a variable contains a type-2 membership function, you can add additional type-2 membership
functions without specifying one of these parameters.

var = addMF(var,"trimf",[3 6 9]);

View the membership functions.

var.MembershipFunctions

ans = 
  1x2 fismftype2 array with properties:
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    Type
    UpperParameters
    LowerScale
    LowerLag
    Name

  Details:
         Name      Type      Upper Parameters    Lower Scale    Lower Lag 
         _____    _______    ________________    ___________    __________

    1    "mf1"    "trimf"      0    3    6            1         0.2    0.2
    2    "mf2"    "trimf"      3    6    9            1         0.2    0.2

See Also
fismf | fismftype2 | fisrule | mamfis | mamfistype2 | sugfis | sugfistype2

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b

 fisvar

9-35



mamfis
Mamdani fuzzy inference system

Description
Use a mamfis object to represent a type-1 Mamdani fuzzy inference system (FIS).

As an alternative to a type-1 Mamdani system, you can create a:

• Type-1 Sugeno system using a sugfis object
• Type-2 Mamdani system using a mamfistype2 object
• Type-2 Sugeno system using a sugfistype2 object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-7.

Creation
To create a Mamdani FIS object, use one of the following methods:

• The mamfis function.
• If you have input and output training data (inputData and outputData, respectively), you can

use the genfis function with the FCM clustering method.

opt = genfisOptions('FCMClustering','FISType','mamdani');
fis = genfis(inputData,outputData,opt);

• If you have a .fis file for a Mamdani system, you can use the readfis function.

Syntax
fis = mamfis
fis = mamfis(Name,Value)

Description

fis = mamfis creates a Mamdani FIS with default property values. To modify the properties of the
fuzzy system, use dot notation.

fis = mamfis(Name,Value) specifies FIS configuration information or sets object properties
using name-value pair arguments. You can specify multiple name-value pairs. Enclose names in
quotes.
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Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for both input and output variables, specified as the comma-separated pair
consisting of "MFType" and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each
input and output variable, the membership functions are uniformly distributed over the variable
range with approximately 80% overlap in the MF supports.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.
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Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"min" (default) | "prod" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "min" — Minimum of fuzzified input values
• "prod" — Product of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

OrMethod — OR operator method
"max" (default) | "probor" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "max" — Maximum of fuzzified input values.
• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

ImplicationMethod — Implication method
"min" (default) | "prod" | string | character vector | function handle

Implication method for computing the consequent fuzzy set, specified as one of the following:

• "min" — Truncate the consequent membership function at the antecedent result value.
• "prod" — Scale the consequent membership function by the antecedent result value.
• String or character vector — Name of a custom implication function in the current working folder

or on the MATLAB path.
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• Function handle — Custom implication function in the current working folder or on the MATLAB
path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

AggregationMethod — Aggregation method
"max" (default) | "sum" | "probor" | string | character vector | function handle

Aggregation method for combining rule consequents, specified as one of the following:

• "max" — Maximum of consequent fuzzy sets
• "sum" — Sum of consequent fuzzy sets
• "probor" — Probabilistic OR of consequent fuzzy sets. For more information, see probor.
• String or character vector — Name of a custom aggregation function in the current working folder

or on the MATLAB path
• Function handle — Custom aggregation function in the current working folder or on the MATLAB

path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

DefuzzificationMethod — Defuzzification method
"centroid" (default) | "bisector" | "mom" | "lom" | "som" | string | character vector | function
handle

Defuzzification method for computing crisp output values from the aggregated output fuzzy set,
specified as one of the following:

• "centroid" — Centroid of the area under the output fuzzy set
• "bisector" — Bisector of the area under the output fuzzy set
• "mom" — Mean of the values for which the output fuzzy set is maximum
• "lom" — Largest value for which the output fuzzy set is maximum
• "som" — Smallest value for which the output fuzzy set is maximum
• String or character vector — Name of a custom defuzzification function in the current working

folder or on the MATLAB path
• Function handle — Custom defuzzification function in the current working folder or on the

MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.
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Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

DisableStructuralChecks — Flag for disabling consistency checks
false (default) | true

Flag for disabling consistency checks when property values change, specified as a logical value.

By default, when you change the value of a property of a mamfis object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableSturcturalChecks to
true.

Note Disabling structural checks can result in an invalid mamfis object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid mamfis object. Then, set DisableSturcturalChecks to false. If the mamfis
object is invalid, reenabling the consistency checks generates an error.

Object Functions
addInput Add input variable to fuzzy inference system
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removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType2 Convert type-1 fuzzy inference system into type-2 fuzzy inference system

Examples

Create Mamdani Fuzzy Inference System

Create a Mamdani fuzzy inference system with default property values.

fis = mamfis;

Modify the system properties using dot notation. For example, configure fis to use centroid
defuzzification.

fis.DefuzzificationMethod = "centroid";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system. For
example, create a Mamdani fuzzy system with specified AND and OR methods.

fis = mamfis("AndMethod","prod","OrMethod","probor");

Specify Number of Inputs and Outputs for Mamdani System

Create a Mamdani fuzzy inference system with three inputs and one output.

fis = mamfis("NumInputs",3,"NumOutputs",1)

fis = 
  mamfis with properties:

                       Name: "fis"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x3 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x27 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.
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Alternative Functionality
App

You can interactively create a Mamdani FIS using the Fuzzy Logic Designer app. You can then
export the system to the MATLAB workspace.

See Also
fismf | fisrule | fisvar | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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mamfistype2
Interval type-2 Mamdani fuzzy inference system

Description
Use a mamfistype2 object to represent an interval type-2 Mamdani fuzzy inference system (FIS).

As an alternative to a type-2 Mamdani system, you can create a:

• Type-2 Sugeno system using a sugfistype2 object
• Type-1 Mamdani system using a mamfis object
• Type-1 Sugeno system using a sugfis object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-7.

Creation
To create a type-2 Mamdani FIS object, use one of the following methods:

• The mamfistype2 function.
• If you have input and output training data (inputData and outputData, respectively), you can

create a type-1 FIS using the genfis function with the FCM clustering method. You can then
convert this FIS to a type-2 system using convertToType2.

opt = genfisOptions('FCMClustering','FISType','mamdani');
fis1 = genfis(inputData,outputData,opt);
fis = convertToType2(fis1);

• If you have a .fis file for a type-2 Mamdani system, you can use the readfis function.

Syntax
fis = mamfistype2
fis = mamfistype2(Name,Value)

Description

fis = mamfistype2 creates a type-2 Mamdani FIS with default property values. To modify the
properties of the fuzzy system, use dot notation.

fis = mamfistype2(Name,Value) specifies FIS configuration information or sets object
properties using name-value pair arguments. You can specify multiple name-value pairs. Enclose
names in quotes.
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Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for both input and output variables, specified as the comma-separated pair
consisting of "MFType" and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each
input and output variable, the membership functions are uniformly distributed over the variable
range with approximately 80% overlap in the MF supports.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.
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Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"min" (default) | "prod" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "min" — Minimum of fuzzified input values
• "prod" — Product of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

OrMethod — OR operator method
"max" (default) | "probor" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "max" — Maximum of fuzzified input values.
• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

ImplicationMethod — Implication method
"min" (default) | "prod" | string | character vector | function handle

Implication method for computing the consequent fuzzy set, specified as one of the following:

• "min" — Truncate the consequent membership function at the antecedent result value.
• "prod" — Scale the consequent membership function by the antecedent result value.
• String or character vector — Name of a custom implication function in the current working folder

or on the MATLAB path.
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• Function handle — Custom implication function in the current working folder or on the MATLAB
path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

AggregationMethod — Aggregation method
"max" (default) | "sum" | "probor" | string | character vector | function handle

Aggregation method for combining rule consequents, specified as one of the following:

• "max" — Maximum of consequent fuzzy sets
• "sum" — Sum of consequent fuzzy sets
• "probor" — Probabilistic OR of consequent fuzzy sets. For more information, see probor.
• String or character vector — Name of a custom aggregation function in the current working folder

or on the MATLAB path
• Function handle — Custom aggregation function in the current working folder or on the MATLAB

path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

DefuzzificationMethod — Defuzzification method
"centroid" (default)

Defuzzification method for computing crisp output values from the aggregated output fuzzy set.
Type-2 Mamdani systems support only centroid defuzzification.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

You can add membership functions to output variables using the addMF function.
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Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

DisableStructuralChecks — Flag for disabling consistency checks
false (default) | true

Flag for disabling consistency checks when property values change, specified as a logical value.

By default, when you change the value of a property of a mamfistype2 object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableSturcturalChecks to
true.

Note Disabling structural checks can result in an invalid mamfistype2 object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid mamfistype2 object. Then, set DisableSturcturalChecks to false. If the
mamfistype2 object is invalid, reenabling the consistency checks generates an error.

TypeReductionMethod — Type-reduction method
"karnikmendel" (default) | "ekm" | "iasc" | "eiasc" | string | function handle

Type-reduction method for converting a type-2 output fuzzy set to an interval type-1 fuzzy set,
specified as one of the following:

• "karnikmendel" — Karnik-Mendel
• "ekm" — Enhanced Karnik-Mendel
• "iasc" — Iterative algorithm with stop condition
• "eiasc" — Enhanced iterative algorithm
• String — Name of a custom type-reduction function in the current working directory or on the

MATLAB path.
• Function handle — Function handle to a custom type-reduction function in the current working

folder or on the MATLAB path.

For more information on type reduction, see “Type-2 Fuzzy Inference Systems” on page 2-7.

Object Functions
addInput Add input variable to fuzzy inference system
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removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType1 Convert type-2 fuzzy inference system into type-1 fuzzy inference system

Examples

Create Type-2 Mamdani Fuzzy Inference System

Create a type-2 Mamdani fuzzy inference system with default property values.

fis = mamfistype2;

Modify the system properties using dot notation. For example, set the type reduction method to use
the enhanced Karnik-Mendel method.

fis.TypeReductionMethod = "ekm";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system.

fis = mamfistype2('TypeReductionMethod',"ekm");

Specify Number of Inputs and Outputs for Type-2 Mamdani System

Create a type-2 Mamdani fuzzy inference system with three inputs and one output.

fis = mamfis("NumInputs",3,"NumOutputs",1)

fis = 
  mamfis with properties:

                       Name: "fis"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x3 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x27 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.
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See Also
fismftype2 | fisrule | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2019b
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MembershipFunctionSettings
Tunable parameter settings for fuzzy membership functions

Description
A MembershipFunctionSettings object contains tunable parameter settings for a type-1
membership function. Using this object, you can specify the tunability settings for the parameters of
the corresponding membership function.

For more information on the tunable settings of a type-2 membership function, see
MembershipFunctionSettingsType2.

Creation
Create MembershipFunctionSettings objects using the getTunableSettings function with a
mamfis, sugfis, or fistree object. The first and second outputs of getTunableSettings contain
VariableSettings objects for input and output variables, respectively. If a VariableSettings
object corresponds to a variable with type-1 membership functions, then its MembershipFunctions
property contains MembershipFunctionSettings objects.

Properties
Parameters — Membership function parameter tunable settings
NumericParameters object

Membership function parameter tunable settings, specified as a NumericParameters object.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(tree)
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in=4×1 object
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

out=2×1 object
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of output 2, set the maximum parameter range to 1.

out(2).MembershipFunctions(1).Parameters.Maximum = 1;

See Also
NumericParameters | VariableSettings | getTunableSettings

Introduced in R2019a
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MembershipFunctionSettingsType2
Tunable parameter settings for type-2 fuzzy membership functions

Description
A MembershipFunctionSettingsType2 object contains tunable parameter settings for a type-2
membership function. Using this object, you can specify the tunability settings for the corresponding
MF, including the upper MF parameters, the lower MF scale, and the lower MF lag.

For more information on the tunable settings of a type-1 membership function, see
MembershipFunctionSettings.

Creation
Create MembershipFunctionSettingsType2 objects using the getTunableSettings function
with a mamfistype2, sugfistype2, or fistree object. The first and second outputs of
getTunableSettings contain VariableSettings objects for input and output variables,
respectively. If a VariableSettings object corresponds to a variable with type-2 membership
functions, then its MembershipFunctions property contains
MembershipFunctionSettingsType2 objects.

Properties
UpperParameters — Upper membership function parameter tunable settings
NumericParameters object

Upper membership function parameter tunable settings, specified as a NumericParameters object.

LowerScale — Lower membership function scale tunable settings
NumericParameters object

Lower membership function scale tunable settings, specified as a NumericParameters object.

LowerLag — Lower membership function lag tunable settings
NumericParameters object

Lower membership function lag tunable settings, specified as a NumericParameters object.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Input and Output Variables from Type-2 FIS

Create a type-2 fuzzy inference system.
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fis = mamfistype2('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of the input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis);

You can use dot notation to specify the tunable settings of the membership functions of the input and
output variables.

For the first membership function of input 1, set the first and third upper membership function
parameters as tunable.

in(1).MembershipFunctions(1).UpperParameters.Free = [1 0 1];

For the first membership function of input 2, set the tunable range of the lower membership function
scale to be between 0.7 and 0.9.

in(2).MembershipFunctions(1).LowerScale.Minimum = 0.7;
in(2).MembershipFunctions(1).LowerScale.Maximum = 0.9;

For the first membership function of output 1, set the tunable range of the lower membership
function lag to be between 0.1 and 0.4.

in(2).MembershipFunctions(1).LowerLag.Minimum = 0.1;
in(2).MembershipFunctions(1).LowerLag.Maximum = 0.4;

See Also
MembershipFunctionSettings | NumericParameters | VariableSettings |
getTunableSettings

Introduced in R2019b
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NumericParameters
Tunable numeric parameter settings of membership functions

Description
A NumericParameters object contains tunable settings for the numeric properties of a fuzzy
membership function.

Creation
Create a NumericParameters object using the getTunableSettings function. The first and
second outputs of getTunableSettings contain VariableSettings objects for input and output
variables, respectively. The MembershipFunctions property of each VariableSettings object
contains NumericParameters objects for specifying the tunable settings of the membership function
properties.

Properties
Free — Parameter values available for tuning
vector of logical values | 1 | 0

Parameter values available for tuning, specified as one of the following:

• Vector of logical values when the NumericParameters contains tunable settings for the
Parameters property of a type-1 membership function or the UpperParameters property of a
type-2 membership function

• Logical 1 or 0 when the NumericParameters object contains tunable settings for either the
LowerScale or LowerLag properties of a type-2 membership function

Minimum — Minimum parameter values
vector | scalar

Minimum parameter values, specified as one of the following:

• Vector when the NumericParameters contains tunable settings for the Parameters property of
a type-1 membership function or the UpperParameters property of a type-2 membership
function

• Scalar value when the NumericParameters object contains tunable settings for either the
LowerScale or LowerLag properties of a type-2 membership function

Maximum — Maximum parameter values
vector | scalar

Maximum parameter values, specified as one of the following:

• Vector when the NumericParameters contains tunable settings for the Parameters property of
a type-1 membership function or the UpperParameters property of a type-2 membership
function
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• Scalar value when the NumericParameters object contains tunable settings for either the
LowerScale or LowerLag properties of a type-2 membership function.

Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(tree)

in=4×1 object
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

out=2×1 object
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of output 2, set the maximum parameter range to 1.

out(2).MembershipFunctions(1).Parameters.Maximum = 1;
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Obtain Tunable Settings of Input and Output Variables from Type-2 FIS

Create a type-2 fuzzy inference system.

fis = mamfistype2('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of the input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis);

You can use dot notation to specify the tunable settings of the membership functions of the input and
output variables.

For the first membership function of input 1, set the first and third upper membership function
parameters as tunable.

in(1).MembershipFunctions(1).UpperParameters.Free = [1 0 1];

For the first membership function of input 2, set the tunable range of the lower membership function
scale to be between 0.7 and 0.9.

in(2).MembershipFunctions(1).LowerScale.Minimum = 0.7;
in(2).MembershipFunctions(1).LowerScale.Maximum = 0.9;

For the first membership function of output 1, set the tunable range of the lower membership
function lag to be between 0.1 and 0.4.

in(2).MembershipFunctions(1).LowerLag.Minimum = 0.1;
in(2).MembershipFunctions(1).LowerLag.Maximum = 0.4;

See Also
MembershipFunctionSettings | VariableSettings | getTunableSettings

Introduced in R2019a
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RuleSettings
Tunable parameter settings of fuzzy rules

Description
A RuleSettings object is created using the getTunableSettings function with a mamfis,
sugfis, or fistree object. When the third output is specified, getTunableSettings returns
tunable parameter settings of fuzzy rules. Specify the settings of the Antecedent and Consequent
properties.

Creation
Create a RuleSettings object using getTunableSettings with three outputs.

Properties
FISName — Name of fuzzy inference system
string

This property is read-only.

Name of fuzzy inference system, specified as a string.

Index — Index of rule in fuzzy inference system
double

This property is read-only.

Index of rule in fuzzy inference system, specified as an integer.

Antecedent — Antecedent parameter settings of rule
ClauseParameters object

Antecedent parameter settings of rule, specified as a ClauseParameters object. Each antecedent
parameter consists of the properties AllowNot, AllowEmpty, and Free. You can specify these
properties.

Consequent — Consequent parameter settings of rule
ClauseParameters object

Consequent parameter settings of rule, specified as a ClauseParameters object. Each consequent
parameter consists of the properties AllowNot, AllowEmpty, and Free. You can specify these
properties.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable
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Examples

Obtain Tunable Settings of Rules from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of rules of the fuzzy inference system.

[~,~,rule] = getTunableSettings(tree)

rule=18×1 object
  16x1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName
      ⋮

You can use dot notation to specify the tunable settings of rules.

For the first rule, do not tune input 1 membership function index and do not ignore output 1
membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Consequent.AllowEmpty(1) = false;

For the second rule, allow NOT logic for input 2 membership function index.

rule(2).Antecedent.AllowNot(2) = true;

See Also
ClauseParameters | VariableSettings | getTunableSettings

Introduced in R2019a
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sugfis
Sugeno fuzzy inference system

Description
Use a sugfis object to represent a type-1 Sugeno fuzzy inference system (FIS).

As an alternative to a type-1 Sugeno system, you can create a:

• Type-1 Mamdani system using a mamfis object
• Type-2 Sugeno system using a sugfistype2 object
• Type-2 Mamdani system using a mamfistype2 object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-7.

Creation
To create a Sugeno FIS object, use one of the following methods:

• The sugfis function.
• If you have input/output data, you can use the genfis function.
• If you have a .fis file for a Sugeno system, you can use the readfis function.
• Convert an existing Mamdani FIS to a Sugeno FIS using convertToSugeno.

Syntax
fis = sugfis
fis = sugfis(Name,Value)

Description

fis = sugfis creates a Sugeno FIS with default property values. To modify the properties of the
fuzzy system, use dot notation.

fis = sugfis(Name,Value) specifies FIS configuration information or sets object properties
using name-value pair arguments. You can specify multiple name-value pairs. Enclose names in
quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables
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NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for input variables, specified as the comma-separated pair consisting of
'MFType' and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each input
variable, the membership functions are uniformly distributed over the variable range with
approximately 80% overlap in the MF supports.

Output membership functions are set to "constant" and uniformly distributed over the output
variable ranges.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.

Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"prod" (default) | "min" | string | character vector | function handle
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AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "prod" — Product of fuzzified input values
• "min" — Minimum of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

OrMethod — OR operator method
"probor" (default) | "max" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• "max" — Maximum of fuzzified input values.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

ImplicationMethod — Implication method
"prod" (default)

Implication method for computing consequent fuzzy set, specified as "prod". Sugeno systems always
use the "prod" implication method, which scales the consequent membership function by the
antecedent result value.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

AggregationMethod — Aggregation method
"sum" (default)

Aggregation method for combining rule consequents, specified as "sum". Sugeno systems always use
the "sum" aggregation method, which is the sum of the consequent fuzzy sets.

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.
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DefuzzificationMethod — Defuzzification method
"wtaver" (default) | "wtsum"

Defuzzification method for computing crisp output values from the aggregated output fuzzy set,
specified as one of the following:

• "wtaver" — Weighted average of all rule outputs
• "wtsum" — Weighted sum of all rule outputs

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively. You can modify the properties of the input variables using
dot notation.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

DisableStructuralChecks — Flag for disabling consistency checks
false (default) | true

Flag for disabling consistency checks when property values change, specified as a logical value.
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By default, when you change the value of a property of a sugfis object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableSturcturalChecks to
true.

Note Disabling structural checks can result in an invalid sugfis object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid sugfis object. Then, set DisableSturcturalChecks to false. If the sugfis
object is invalid, reenabling the consistency checks generates an error.

Object Functions
addInput Add input variable to fuzzy inference system
removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType2 Convert type-1 fuzzy inference system into type-2 fuzzy inference system

Examples

Create Sugeno Fuzzy Inference System

Create a Sugeno fuzzy inference system with default property values.

fis = sugfis;

Modify the system properties using dot notation. For example, configure fis to use weighted-sum
defuzzification.

fis.DefuzzificationMethod = "wtsum";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system. For
example, create a Sugeno fuzzy system with specified AND and OR methods.

fis = sugfis("AndMethod","min","OrMethod","max");

Specify Number of Inputs and Outputs for Sugeno System

Create a Sugeno fuzzy inference system with three inputs and one output.

fis = sugfis("NumInputs",3,"NumOutputs",1)
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fis = 
  sugfis with properties:

                       Name: "fis"
                  AndMethod: "prod"
                   OrMethod: "probor"
          ImplicationMethod: "prod"
          AggregationMethod: "sum"
      DefuzzificationMethod: "wtaver"
                     Inputs: [1x3 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x27 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.

Create Sugeno FIS with Linear Output Membership Functions

Load a Sugeno FIS from a file.

fis = readfis('sugeno1');

The output variable has two membership functions. View the properties of the first membership
function.

fis.Outputs(1).MembershipFunctions(1)

ans = 
  fismf with properties:

          Type: "linear"
    Parameters: [-1 -1]
          Name: "line1"

View the properties of the second membership function.

fis.Outputs(1).MembershipFunctions(2)

ans = 
  fismf with properties:

          Type: "linear"
    Parameters: [1 -1]
          Name: "line2"

The input membership functions and rules define which of these output functions are expressed and
when.

fis.Rules

ans = 
  1x2 fisrule array with properties:
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    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                    Description           
         _________________________________

    1    "input==low => output=line1 (1)" 
    2    "input==high => output=line2 (1)"

Plot the input membership functions of this system. The low membership function generally refers to
input values less than zero, while high refers to values greater than zero.

plotmf(fis,'input',1)

Plot the output surface for this FIS.

gensurf(fis)
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The overall fuzzy system output switches smoothly from the line called line1 to the line called
line2.

Alternative Functionality
App

You can interactively create a Sugeno FIS using the Fuzzy Logic Designer or Neuro-Fuzzy
Designer apps. You can then export the system to the MATLAB workspace.

See Also
fismf | fisrule | fisvar | mamfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2018b
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sugfistype2
Interval type-2 Sugeno fuzzy inference system

Description
Use a sugfistype2 object to represent an interval type-2 Sugeno fuzzy inference system (FIS).

As an alternative to a type-2 Sugeno system, you can create a:

• Type-2 Mamdani system using a mamfistype2 object
• Type-1 Sugeno system using a sugfis object
• Type-1 Mamdani system using a mamfis object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-7.

Creation
To create a type-2 Sugeno FIS object, use one of the following methods:

• The sugfistype2 function.
• If you have input/output data, you can use the genfis function. You can then convert this FIS to a

type-2 system using convertToType2.
• If you have a .fis file for a Sugeno system, you can use the readfis function.
• Convert an existing type-2 Mamdani FIS to a Sugeno FIS using convertToSugeno.

Syntax
fis = sugfistype2
fis = sugfistype2(Name,Value)

Description

fis = sugfistype2 creates a type-2 Sugeno FIS with default property values. To modify the
properties of the fuzzy system, use dot notation.

fis = sugfistype2(Name,Value) specifies FIS configuration information or sets object
properties using name-value pair arguments. You can specify multiple name-value pairs. Enclose
names in quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for input variables, specified as the comma-separated pair consisting of
'MFType' and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each input
variable, the membership functions are uniformly distributed over the variable range with
approximately 80% overlap in the MF supports.

Output membership functions are set to "constant" and uniformly distributed over the output
variable ranges.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.

Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.
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AndMethod — AND operator method
"prod" (default) | "min" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "prod" — Product of fuzzified input values
• "min" — Minimum of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

OrMethod — OR operator method
"probor" (default) | "max" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• "max" — Maximum of fuzzified input values.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-40.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-21.

ImplicationMethod — Implication method
"prod" (default)

Implication method for computing consequent fuzzy set, specified as "prod". Sugeno systems always
use the "prod" implication method, which scales the consequent membership function by the
antecedent result value.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

AggregationMethod — Aggregation method
"sum" (default)

Aggregation method for combining rule consequents, specified as "sum". Sugeno systems always use
the "sum" aggregation method, which is the sum of the consequent fuzzy sets.
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For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-21.

DefuzzificationMethod — Defuzzification method
"wtaver" (default)

Defuzzification method for computing crisp output values from the aggregated output fuzzy set.
Type-2 Sugeno systems support only weighted-average defuzzification.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively. You can modify the properties of the input variables using
dot notation.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

DisableStructuralChecks — Flag for disabling consistency checks
false (default) | true

Flag for disabling consistency checks when property values change, specified as a logical value.

By default, when you change the value of a property of a sugfistype2 object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableSturcturalChecks to
true.
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Note Disabling structural checks can result in an invalid sugfistype2 object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid sugfistype2 object. Then, set DisableSturcturalChecks to false. If the
sugfistype2 object is invalid, reenabling the consistency checks generates an error.

TypeReductionMethod — Type-reduction method
"karnikmendel" (default) | "ekm" | "iasc" | "eiasc" | string | function handle

Type-reduction method for converting a type-2 output fuzzy set to an interval type-1 fuzzy set,
specified as one of the following:

• "karnikmendel" — Karnik-Mendel
• "ekm" — Enhanced Karnik-Mendel
• "iasc" — Iterative algorithm with stop condition
• "eiasc" — Enhanced iterative algorithm
• String — Name of a custom type-reduction function in the current working directory or on the

MATLAB path.
• Function handle — Function handle to a custom type-reduction function in the current working

folder or on the MATLAB path.

For more information on type reduction, see “Type-2 Fuzzy Inference Systems” on page 2-7.

Object Functions
addInput Add input variable to fuzzy inference system
removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType1 Convert type-2 fuzzy inference system into type-1 fuzzy inference system

Examples

Create Type-2 Sugeno Fuzzy Inference System

Create a type-2 Sugeno fuzzy inference system with default property values.

fis = sugfistype2;

Modify the system properties using dot notation. For example, set the type reduction method to use
the enhanced Karnik-Mendel method.

fis.TypeReductionMethod = "ekm";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system.
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fis = sugfistype2('TypeReductionMethod',"ekm");

Specify Number of Inputs and Outputs for Type-2 Sugeno System

Create a type-2 Sugeno fuzzy inference system with three inputs and one output. A type-2 Sugeno
system uses type-2 membership functions only for its input variables.

fis = sugfistype2("NumInputs",3,"NumOutputs",1)

fis = 
  sugfistype2 with properties:

                       Name: "fis"
                  AndMethod: "prod"
                   OrMethod: "probor"
          ImplicationMethod: "prod"
          AggregationMethod: "sum"
      DefuzzificationMethod: "wtaver"
                     Inputs: [1x3 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x27 fisrule]
    DisableStructuralChecks: 0
        TypeReductionMethod: "karnikmendel"

    See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.

See Also
fismftype2 | fisrule | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-31

Introduced in R2019b
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tunefisOptions
Option set for tunefis function

Description
Use a tunefisOptions object to specify options for tuning fuzzy systems using the tunefis
function. You can specify options such as the optimization method, optimization type, and distance
metric for optimization cost calculation.

Creation

Syntax
opt = tunefisOptions
opt = tunefisOptions(Name,Value)

Description

opt = tunefisOptions creates a default option set for tuning a fuzzy inference system using the
tunefis function. To modify the properties of this option set for your specific application, use dot
notation.

opt = tunefisOptions(Name,Value) creates an option set with “Properties” on page 9-73
specified using one or more name-value pair arguments.

Properties
Method — Tuning algorithm
"ga" (default) | "particleswarm" | "patternsearch" | "simulannealbnd" | "anfis"

Tuning algorithm, specified as one of the following:

• "ga" — genetic algorithm
• "particleswarm" — particle swarm
• "patternsearch" — pattern search
• "simulannealbnd" — simulated annealing algorithm
• "anfis" — adaptive neuro-fuzzy

These tuning algorithms use solvers from the Global Optimization Toolbox software, except for
"anfis". The MethodOptions property differs for each algorithm, and corresponds to the options
input argument for the respective solver. If you specify MethodOptions without specifying Method,
then the tuning method is determined based on MethodOptions.

The "anfis" tuning method supports tuning only type-1 Sugeno fuzzy inference systems with one
output variable.

 tunefisOptions

9-73



MethodOptions — Tuning algorithm options
options created using optimoptions

Tuning algorithm options, specified as an option object for the tuning algorithm specified by Method.
This property differs for each algorithm and is created using optimoptions. If you do not specify
MethodOptions, tunefis creates a default option object for the tuning method specified in
Method. To modify the options in MethodOptions, use dot notation.

OptimizationType — Type of optimization
"tuning" (default) | "learning"

Type of optimization, specified as one of the following:

• "tuning" — Optimize the existing input, output, and rule parameters without learning new rules.
• "learning" — Learn new rules up to the maximum number of rules specified by NumMaxRules.

The "anfis" algorithm supports only "tuning" optimization.

NumMaxRules — Maximum number of rules in a FIS
Inf (default) | integer

Maximum number of rules in a FIS after optimization, specified as an integer. The number of rules in
a FIS (after optimization) can be less than NumMaxRules, since duplicate rules with the same
antecedent values are removed from the rule base.

When NumMaxRules is Inf, tunefis sets NumMaxRules to the maximum number of possible rules
for the FIS. This maximum value is computed based on the number of input variables and the number
of membership functions for each input variable.

When tuning the parameters of a fistree object, NumMaxRules indicates the maximum number of
rules for each FIS in the fistree.

The "anfis" tuning method ignores this option.

IgnoreInvalidParameters — Flag for ignoring invalid parameters
true (default) | false

Flag for ignoring invalid parameters, specified as either true or false. When
IgnoreInvalideParameters is true, the tunefis function ignores invalid parameter values
generated during the tuning process.

The "anfis" tuning method ignores this option.

DistanceMetric — Type of distance metric
"rmse" (default) | "norm1" | "norm2"

Type of distance metric used for computing the cost for the optimized parameter values with respect
to the training data, specified as one of the following:

• "rmse" — Root-mean-squared error
• "norm1" — Vector 1-norm
• "norm2" — Vector 2-norm

For more information on vector norms, see norm.
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The "anfis" tuning method supports only the "rmse" metric.

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing, specified as either true or false. When UseParallel is true,
the tunefis function uses parallel computation in the optimization process. Using parallel
computing requires Parallel Computing Toolbox™ software.

The "anfis" tuning method does not support parallel computation.

KFoldValue — Number of cross validations to perform
0 (default) | nonnegative integer

Number of cross validations to perform, specified as a nonnegative integer less than or equal to the
number of rows in the training data.

When KFoldValue is 0 or 1, tunefis uses the entire input data set for training and does not
perform validation.

Otherwise, tunefis randomly partitions the input data into KFoldValue subsets of approximately
equal size. The function then performs KFoldValue training-validation iterations. For each iteration,
one data subset is used as validation data with the remaining subsets used as training data. The
following figure shows the data partition and iterations for KFoldValue = 4.

For an example that tunes a fuzzy inference system using k-fold cross validation, see “FIS Parameter
Optimization with K-fold Cross Validation” on page 3-50.

The "anfis" tuning method ignores this option.

ValidationTolerance — Maximum allowable increase in validation cost
0.1 (default) | value in the range [0,1]
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Maximum allowable increase in validation cost when using k-fold cross validation, specified as a
scalar value in the range [0,1]. A higher ValidationTolerance value produces a longer training-
validation iteration, with an increased possibility of data overfitting.

The increase in validation cost, ΔC, is the difference between the average validation cost and the
minimum validation cost, Cmin, for the current training-validation iteration. The average validation
cost is a moving average with a window size equal to ValidationWindowSize.

tunefis stops the current training-validation iteration when the ratio between ΔC and Cmin exceeds
ValidationTolerance.

ValidationTolerance is ignored when KFoldValue is 0 or 1.

The "anfis" tuning method ignores this option.

ValidationWindowSize — Window size for computing average validation cost
5 (default) | positive integer

Window size for computing average validation cost, specified as a positive integer. The validation cost
moving average is computed over the last N validation cost values, where N is equal to
ValidationWindowSize. A higher ValidationWindowSize value produces a longer training-
validation iteration, with an increased possibility of data overfitting. A lower window size can cause
early termination of the tuning process when the training data is noisy.

ValidationWindowSize is ignored when KFoldValue is 0 or 1.

The "anfis" tuning method ignores this option.

Display — Data to display in command window during training
"all" (default) | "tuningonly" | "validationonly" | "none"

Data to display in command window during training, specified as one of the following values.

• "all" — Display both training and validation results.
• "tuningonly" — Display only training results.
• "validationonly" — Display only validation results.
• "none" — Display neither training nor validation results.

Examples

Specify Options for FIS Tuning

Create a default option set using the particle swarm tuning algorithm.

opt = tunefisOptions("Method","particleswarm")

opt = 
  tunefisOptions with properties:

                     Method: "particleswarm"
              MethodOptions: [1x1 optim.options.Particleswarm]
           OptimizationType: "tuning"
                NumMaxRules: Inf
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    IgnoreInvalidParameters: 1
             DistanceMetric: "rmse"
                UseParallel: 0
                 KFoldValue: 0
        ValidationTolerance: 0.1000
       ValidationWindowSize: 5
                    Display: "all"

You can modify the options using dot notation. For example, set the maximum number of iterations to
20.

opt.MethodOptions.MaxIterations = 20;

You can also specify other options when creating the option set. In this example, set the
OptimizationType to "learning" to learn new rules.

opt2 = tunefisOptions("Method","particleswarm","OptimizationType","learning")

opt2 = 
  tunefisOptions with properties:

                     Method: "particleswarm"
              MethodOptions: [1x1 optim.options.Particleswarm]
           OptimizationType: "learning"
                NumMaxRules: Inf
    IgnoreInvalidParameters: 1
             DistanceMetric: "rmse"
                UseParallel: 0
                 KFoldValue: 0
        ValidationTolerance: 0.1000
       ValidationWindowSize: 5
                    Display: "all"

See Also
getTunableSettings | tunefis

Introduced in R2019a
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VariableSettings
Tunable parameter settings of fuzzy variables

Description
A VariableSettings object contains tunable parameter settings for either an input or output
variable of a fuzzy inference system. Using this object, you can specify the tunability settings for the
membership functions of the corresponding variable.

Creation
Create a VariableSettings object using the getTunableSettings function. The first and second
outputs of getTunableSettings contain VariableSettings objects for input and output
variables, respectively.

Properties
FISName — Name of fuzzy inference system
string

This property is read-only.

Name of fuzzy inference system, specified as a string.

Type — Type of variable
"input" | "output"

This property is read-only.

Type of variable, specified as either "input" or "output" for input and output variables,
respectively.

VariableName — Name of variable
string

This property is read-only.

Name of variable, specified as a string.

MembershipFunctions — Membership function settings
MembershipFunctionSettings object | MembershipFunctionSettingsType2 object

Membership function settings, specified as one of the following:

• MembershipFunctionSettings object when the corresponding variable contains type-1
membership functions

• MembershipFunctionSettingsType2 object when the corresponding variable contains type-2
membership functions
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Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(tree)

in=4×1 object
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

out=2×1 object
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of output 2, set the maximum parameter range to 1.

out(2).MembershipFunctions(1).Parameters.Maximum = 1;
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See Also
MembershipFunctionSettings | MembershipFunctionSettingsType2 | RuleSettings |
getTunableSettings

Introduced in R2019a
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Diff. Sigmoidal MF
Difference of two sigmoids membership function in Simulink software

Description
The Diff. Sigmoidal MF block implements a membership function in Simulink based on the difference
between two sigmoids. The two sigmoid curves are given by

fk(x) = 1
1 + exp(− ak(x− ck))

where k=1,2. The parameters a1and a2 control the slopes of the left and right curves. The parameters
c1 and c2 control the points of inflection for the left and right curves. The parameters a1 and a2 should
be positive.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
dsigmf

Introduced before R2006a
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Fuzzy Logic Controller
Evaluate fuzzy inference system
Library: Fuzzy Logic Toolbox

Description
The Fuzzy Logic Controller block implements a fuzzy inference system (FIS) in Simulink. You specify
the FIS to evaluate using the FIS name parameter.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-21.

To display the fuzzy inference process in the Rule Viewer during simulation, use the Fuzzy Logic
Controller with Ruleviewer block.

Ports
Input

in — Input signal
scalar | vector

For a single-input fuzzy inference system, the input is a scalar signal. For a multi-input fuzzy system,
combine the inputs into a vector signal using blocks such as:

• Mux
• Vector Concatenate
• Bus Creator

Output

out — Defuzzified output signal
scalar | vector

For a single-output FIS, the output is a scalar signal. For a multi-output FIS, the output is a vector
signal. To split system outputs into scalar signals, use the Demux block.

fi — Fuzzified input values
matrix

Fuzzified input values, obtained by evaluating the input membership functions of each rule at the
current input values.

For a type-1 FIS, fi is an NR-by-NU matrix signal, where NR is the number of FIS rules. Element (i,j)
of fi is the value of the input membership function for the jth input in the ith rule.

For a type-2 FIS, fi is an NR-by-(2*NU) matrix signal. The first NU columns contain the fuzzified
values of the upper membership function for each rule, and the last NU columns contain the fuzzified
values from the lower membership functions.
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For more information on fuzzifying input values, see “Fuzzify Inputs” on page 1-21.

Dependencies

To enable this port, select the Fuzzified inputs (fi) parameter.

rfs — Rule firing strengths
column vector

Rule firing strengths, obtained by evaluating the antecedent of each rule; that is, applying the fuzzy
operator to the values of the fuzzified inputs.

For a type-1 FIS, rfs is a column vector signal of length NR, where NR is the number of rules, and
element i is the firing strength of the ith rule.

For a type-2 FIS, rfs is an NR-by-2 matrix signal. The first column contains the rule firing strengths
generated using upper membership functions, and the second column contains the rule firing
strengths generated using lower membership functions.

For more information on applying fuzzy operators, see “Apply Fuzzy Operator” on page 1-22.

Dependencies

To enable this port, select the Rule firing strengths (rfs) parameter.

ro — Rule outputs
matrix

Rule outputs, obtained by applying the rule firing strengths to the output membership functions using
the implication method specified in the FIS.

For a type-1 Mamdani FIS, ro is an NS-by-(NRNY) matrix signal, where NR is the number of rules, NY is
the number of outputs, and NS is the number of sample points used for evaluating output variable
ranges. Each column of ro contains the output fuzzy set for one rule. The first NR columns contain
the rule outputs for the first output variable, the next NR columns correspond to the second output
variable, and so on.

For a type-2 Mamdani FIS, ro is an NS-by-(2*NR*NY) matrix signal. The first NR*NY columns contain
the rule outputs generated using upper membership functions, and the last NR*NY columns contain
the rule outputs generated using lower membership functions.

For a type-1 Sugeno system, each rule output is a scalar value. In this case, ro is an NR-by-NY matrix
signal. Element (j,k) of ro is the value of the kth output variable for the jth rule.

For a type-2 Sugeno system, ro is an NR-by-(3*NY) array. The first NY columns contain the rule output
levels. The next NY columns contain the corresponding rule firing strengths generated using upper
membership functions. The last NY columns contain the rule firing strengths generated using lower
membership functions. For example, in a three-output system, columns 4 and 7 contain the firing
strengths for the output levels in column 1.

For more information on fuzzy implication, see “Apply Implication Method” on page 1-23.

Dependencies

• To enable this port, select the Rule outputs (ro) parameter.
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• To specify NS, use the Number of samples for output discretization parameter.

ao — Aggregated output
matrix | row vector

Aggregate output for each output variable, obtained by combining the corresponding outputs from all
the rules using the aggregation method specified in the FIS.

For a type-1 Mamdani fuzzy inference system, the aggregate result for each output variable is a fuzzy
set. In this case, ao is as an NS-by-NY matrix signal, where NY is the number of outputs and NS is the
number of sample points used for evaluating output variable ranges. Each column of ao contains the
aggregate fuzzy set for one output variable.

For a type-2 Mamdani FIS, the aggregate result for each output variable is a fuzzy set. In this case,
ao is as an NS-by-(2*NY) matrix signal. The first NY columns contain the aggregated outputs
generated using upper membership functions, and the last NY columns contain the aggregated
outputs generated using lower membership functions.

For a type-1 Sugeno system, the aggregate result for each output variable is a scalar value. In this
case, ao is a row vector of length NY, where element k is the sum of the rule outputs for the kth
output variable.

For a type-2 Sugeno system, ao is an NR-by-(3*NY) array. aggregatedOut contains the same data as
ro with the columns sorted based on the output levels. For example, in a three-output system, when
the output levels in column 1 are sorted, the corresponding firing strengths in columns 4 and 7 are
adjusted accordingly.

For more information on fuzzy aggregation, see “Aggregate All Outputs” on page 1-24.

Dependencies

• To enable this port, select the Aggregated outputs (ao) parameter.
• To specify NS, use the Number of samples for output discretization parameter.

Parameters
General

FIS name — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | file name

Fuzzy inference system to evaluate, specified as one of the following:

• mamfis or sugfis object — Specify the name of a type-1 FIS object in the MATLAB workspace.
• mamfistype2 or sugfistype2 object — Specify the name of a type-2 FIS object in the MATLAB

workspace.
• File name — Specify the name of a .fis file in the current working folder or on the MATLAB path.

Including the file extension in the file name is optional.

To save a type-1 fuzzy inference system to a .fis file:

• In Fuzzy Logic Designer or Neuro-Fuzzy Designer, select File > Export > To File.
• At the command line, use writeFIS.
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To save a type-2 fuzzy inference system to a .fis file, use wrtieFIS.

Number of samples for output discretization — Number of points in output fuzzy sets
101 (default) | integer greater than 1

Number of samples for discretizing the range of output variables, specified as an integer greater than
1. This value corresponds to the number of points in the output fuzzy set for each rule.

To reduce memory usage while evaluating a Mamdani FIS, specify a lower number of samples. Doing
so sacrifices the accuracy of the defuzzified output value. Specifying a low number of samples can
make the output area for defuzzification zero. In this case, the defuzzified output value is the
midpoint of the output variable range.

Note The block ignores this parameter when evaluating a Sugeno FIS.

Data type — Signal data type
double (default) | single | fixed-point | expression

Signal data type, specified as one of the following:

• double — Double-precision signals
• single — Single-precision signals
• fixdt(1,16,0) — Fixed-point signals with binary point scaling
• fixdt(1,16,2^0,0) — Fixed-point signals with slope and bias scaling
• Expression — Expression that evaluates to one of these data types

For fixed-point data types, you can configure the signedness, word length, and scaling parameters
using the Data Type Assistant. For more information, see “Specifying a Fixed-Point Data Type”
(Simulink).

Fuzzified inputs (fi) — Enable fi output port
off (default) | on

Enable output port for accessing intermediate fuzzified input data.

Rule firing strengths (rfs) — Enable rfs output port
off (default) | on

Enable output port for accessing intermediate rule firing strength data.

Rule outputs (ro) — Enable ro output port
off (default) | on

Enable output port for accessing intermediate rule output data.

Aggregated outputs (ao) — Enable ao output port
off (default) | on

Enable output port for accessing intermediate aggregate output data.

Simulate using — Simulation mode
Interpreted execution (default) | Code generation
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Simulation mode, specified as one of the following:

• Interpreted execution — Simulate fuzzy systems using precompiled MEX files for single
and double data types. Using this option reduces the initial compilation time of the model.

• Code generation — Simulate fuzzy system without precompiled MEX files. Use this option
when simulating fuzzy systems for code generation applications.

For fixed-point data types, the Fuzzy Logic Controller block always simulates using Code
generation mode.

Diagnostics

Out of range input value — Diagnostic message behavior when an input is out of range
warning (default) | error | none

Diagnostic message behavior when an input is out of range, specified as one of the following:

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When an input value is out of range, corresponding rules in the fuzzy system can have unexpected
firing strengths.

Dependencies

• Diagnostic messages are provided only when the Simulate using parameter is Interpreted
execution.

No rule fired — Diagnostic message behavior when no rules fire
warning (default) | error | none

Diagnostic message behavior when no rules fire for a given output variable, specified as one of the
following:

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When No rule fired is warning or none and no rules fire for a given output, the defuzzified output
value is set to its mean range value.

Dependencies

• Diagnostic messages are provided only when the Simulate using parameter is Interpreted
execution.

Empty output fuzzy set — Diagnostic message behavior when an output fuzzy set is
empty
warning (default) | error | none

Diagnostic message behavior when an output fuzzy set is empty, specified as one of the following:

• warning — Report the diagnostic message as a warning.
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• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When Empty output fuzzy set is warning or none and an output fuzzy set is empty, the defuzzified
value for the corresponding output is set to its mean range value.
Dependencies

• This diagnostic message applies to Mamdani systems only.
• Diagnostic messages are provided only when the Simulate using parameter is Interpreted

execution.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Fuzzy Logic Controller with Ruleviewer

Apps
Fuzzy Logic Designer | Neuro-Fuzzy Designer

Functions
evalfis | genfis | mamfis | mamfistype2 | readfis | sugfis | sugfistype2 | writeFIS

Topics
“Fuzzy Inference Process” on page 1-21
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“Simulate Fuzzy Inference Systems in Simulink” on page 5-2

Introduced before R2006a
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Fuzzy Logic Controller with Ruleviewer
Evaluate fuzzy inference system and view rules
Library: Fuzzy Logic Toolbox

Description
The Fuzzy Logic Controller with Ruleviewer block implements a fuzzy inference system (FIS) in
Simulink and displays the fuzzy inference process in the Rule Viewer during the simulation. You
specify the FIS to evaluate using the FIS matrix parameter. To change the time between Rule Viewer
updates, specify the Refresh rate in seconds.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-21.

The Fuzzy Logic Controller with Ruleviewer block does not support all the features supported by the
Fuzzy Logic Controller block. The Fuzzy Logic Controller with Ruleviewer block:

• Only supports double-precision data.
• Uses 101 points for discretizing output variable ranges.
• Only supports Interpreted execution simulation mode.
• Does not have additional output ports for accessing intermediate fuzzy inference results.

Ports
Input

Port_1(In1) — Input signal
scalar | vector

For a single-input fuzzy inference system, the input is a scalar. For a multi-input fuzzy system,
combine the inputs into a vector signal using blocks such as:

• Mux
• Vector Concatenate
• Bus Creator

Output

Port_1(Out1) — Defuzzified output signal
scalar | vector

For a single-output fuzzy inference system, the output is a scalar. For a multi-output fuzzy system, the
output is a vector. To split system outputs into scalar signals, use the Demux block.
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Parameters
FIS matrix — Fuzzy inference system
mamfisobject | sugfisobject

Fuzzy inference system to evaluate, specified as a mamfis or sugfis object. Specify the name of a
FIS object in the MATLAB workspace.

Refresh rate — Time between rule viewer updates
scalar

Time between rule viewer updates in seconds, specified as a scalar. During simulation, the Rule
Viewer display updates at the specified rate to show the inference process for the latest input signal
values.

Compatibility Considerations
Support for representing fuzzy inference systems as structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects instead. There are differences between these representations that
require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems as
structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Generating code using the Fuzzy Logic Controller with Ruleviewer block produces the same code
as using the Fuzzy Logic Controller block. However, the Fuzzy Logic Controller with Ruleviewer
block does not support:

• Generating code for single-point or fixed-point data.
• Changing the number of samples for discretizing the output variable range.

See Also
Blocks
Fuzzy Logic Controller

Apps
Fuzzy Logic Designer | Neuro-Fuzzy Designer
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Functions
evalfis | mamfis | readfis | sugfis

Topics
“Fuzzy Inference Process” on page 1-21
“Simulate Fuzzy Inference Systems in Simulink” on page 5-2

Introduced before R2006a
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Gaussian MF
Gaussian membership function in Simulink software

Description
The Gaussian MF block implements a membership function in Simulink based on a symmetric
Gaussian. The Gaussian curve is given by:

f x = exp −0.5(x− c)2

σ2  

where c is the mean and σ is the standard deviation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gaussmf

Introduced before R2006a
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Gaussian2 MF
Combination of two Gaussian membership functions in Simulink software

Description
The Gaussian2 MF block implements a membership function based on a combination of two Gaussian
functions. The two Gaussian functions are given by:

 fk x = exp
−0.5(x− ck)2

σk2

where k=1,2. The parameters c1 and σ1 are the mean and standard deviation defining the left-most
curve. The parameters c2 and σ2 are the mean and standard deviation defining the right-most curve.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gauss2mf

Introduced before R2006a
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Generalized Bell MF
Generalized bell membership function in Simulink software

Description
The Generalized Bell MF block implements a membership function in Simulink based on a
generalized bell-shaped curve. The generalized bell-shaped curve is given by

f x = 1
1 + x− c

a
2b

where the parameters a and b vary the width of the curve and the parameter c locates the center of
the curve. The parameter b should be positive.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gbellmf

Introduced before R2006a
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Pi-shaped MF
Pi-shaped membership function in Simulink software

Description
The Pi-shaped MF block implements a membership function in Simulink based on a spline-based
curve, so named because of its Π shape. The parameters a and d locate the left and right base points
or "feet" of the curve. The parameters b and c set the left and right top point or "shoulders" of the
curve.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
pimf

Introduced before R2006a
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Probabilistic OR
Probabilistic OR function in Simulink software

Description
The Probabilistic OR block outputs the probabilistic OR value for the vector signal input, based on

y = 1− prod 1− x

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Probabilistic Rule Agg

Functions
probor

Introduced before R2006a
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Probabilistic Rule Agg
Probabilistic OR function, rule aggregation method

Description
The Probabilistic Rule Agg block outputs the element-wise(.*) probabilistic OR value of the two inputs
based on

y = 1− prod 1− a; b

The two inputs, a and b, are row vectors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Probabilistic OR

Functions
probor

Introduced before R2006a
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Prod. Sigmoidal MF
Product of two sigmoid membership functions in Simulink software

Description
The Prod. Sigmoidal MF block implements a membership function based on the product of two
sigmoidal curves. The two sigmoidal curves are given by

fk x = 1
1 + exp −ak x− ck

where k=1,2 The parameters a1 and a2 control the slopes of the left and right curves. The parameters
c1 and c2 control the points of inflection for the left and right curves. Parameters a1 and a2 should be
positive and negative respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
psigmf

Introduced before R2006a
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S-shaped MF
S-shaped membership function in Simulink software

Description
The S-shaped MF block implements an S-shaped membership function in Simulink. Going from left to
right the function increases from 0 to 1. The parameters a and b locate the left and right extremes of
the sloped portion of the curve.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
smf

Introduced before R2006a

10 Blocks
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Sigmoidal MF
Sigmoidal membership function in Simulink software

Description
The Sigmoidal MF block implements a sigmoidal membership function given by

f x = 1
1 + exp(− a(x− c))

When the sign of a is positive the curve increases from left to right. Conversely, when the sign of a is
negative the curve decreases from left to right. The parameter c sets the point of inflection of the
curve.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
sigmf

Introduced before R2006a
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Trapezoidal MF
Trapezoidal membership function in Simulink software

Description
The Trapezoidal MF block implements a trapezoidal-shaped membership function. The parameters a
and d set the left and right "feet," or base points, of the trapezoid. The parameters b and c set the
"shoulders," or top of the trapezoid.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
trapmf

Introduced before R2006a

10 Blocks
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Triangular MF
Triangular membership function in Simulink software

Description
The Triangular MF block implements a triangular-shaped membership function. The parameters a
and c set the left and right “feet,” or base points, of the triangle. The parameter b sets the location of
the triangle peak.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
trimf

Introduced before R2006a

 Triangular MF

10-23



Z-shaped MF
Z-shaped membership function in Simulink software

Description
The Z-shaped MF block implements a Z-shaped membership function. Going from left to right the
function decreases from 1 to 0. The parameters a and b locate the left and right extremes of the
sloped portion of the curve.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
zmf

Introduced before R2006a

10 Blocks
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